Advertisement

Memory & Cognition

, Volume 42, Issue 6, pp 898–911 | Cite as

Errorful and errorless learning: The impact of cue–target constraint in learning from errors

  • Emma K. BridgerEmail author
  • Axel Mecklinger
Article

Abstract

The benefits of testing on learning are well described, and attention has recently turned to what happens when errors are elicited during learning: Is testing nonetheless beneficial, or can errors hinder learning? Whilst recent findings have indicated that tests boost learning even if errors are made on every trial, other reports, emphasizing the benefits of errorless learning, have indicated that errors lead to poorer later memory performance. The possibility that this discrepancy is a function of the materials that must be learned—in particular, the relationship between the cues and targets—was addressed here. Cued recall after either a study-only errorless condition or an errorful learning condition was contrasted across cue–target associations, for which the extent to which the target was constrained by the cue was either high or low. Experiment 1 showed that whereas errorful learning led to greater recall for low-constraint stimuli, it led to a significant decrease in recall for high-constraint stimuli. This interaction is thought to reflect the extent to which retrieval is constrained by the cue–target association, as well as by the presence of preexisting semantic associations. The advantage of errorful retrieval for low-constraint stimuli was replicated in Experiment 2, and the interaction with stimulus type was replicated in Experiment 3, even when guesses were randomly designated as being either correct or incorrect. This pattern provides support for inferences derived from reports in which participants made errors on all learning trials, whilst highlighting the impact of material characteristics on the benefits and disadvantages that accrue from errorful learning in episodic memory.

Keywords

Testing effect Cued recall Errorless learning Errorful learning 

Notes

Author note

This research was supported by the German Research Foundation under Grant No. DFG-IRTG-1457, and was conducted in the International Research Training Group “Adaptive Minds,” hosted by Saarland University, Saarbrücken (Germany). We thank Hubert Zimmer for valuable discussion on this topic, as well as Marie Schwartz, Leon Markelis, Katharina Jung, and Stefanie Kolb for assistance with stimulus preparation and data collection.

References

  1. Anderson, N. D., & Craik, F. I. M. (2006). The mnemonic mechanisms of errorless learning. Neuropsychologia, 44, 2806–2813. doi: 10.1016/j.neuropsychologia.2006.05.026 PubMedCrossRefGoogle Scholar
  2. Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical database (CD-ROM). Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania.Google Scholar
  3. Baddeley, A., & Wilson, B. A. (1994). When implicit learning fails: amnesia and the problem of error elimination. Neuropsychologia, 32, 53–68.PubMedCrossRefGoogle Scholar
  4. Bjork, R. A. (1988). Retrieval practice and the maintenance of knowledge. In M. M. Gruneberg, P. E. Morris, & R. N. Sykes (Eds.), Practical aspects of memory: Current research and issues (Vol. 1, pp. 396–401). New York: Wiley.Google Scholar
  5. Butterfield, B., & Metcalfe, J. (2001). Errors committed with high confidence are hypercorrected. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1491–1494. doi: 10.1037/0278-7393.27.6.1491 PubMedGoogle Scholar
  6. Carpenter, S. K. (2011). Semantic information activated during retrieval contributes to later retention: Support for the mediator effectiveness hypothesis of the testing effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1547–1552. doi: 10.1037/a0024140 PubMedGoogle Scholar
  7. Carpenter, S. K., & DeLosh, E. L. (2006). Impoverished cue support enhances subsequent retention: support for the elaborative retrieval explanation of the testing effect. Memory & Cognition, 34, 268–276. doi: 10.3758/BF03193405 CrossRefGoogle Scholar
  8. Carpenter, S. K., Pashler, H., Wixted, J. T., & Vul, E. (2008). The effects of tests on learning and forgetting. Memory & Cognition, 36, 438–448. doi: 10.3758/MC.36.2.438 CrossRefGoogle Scholar
  9. Carpenter, S. K., Pashler, H., & Cepeda, N. J. (2009). Using tests to enhance 8th grade students’ retention of U.S. history facts. Applied Cognitive Psychology, 77, 760–771. doi: 10.1002/acp.1507 CrossRefGoogle Scholar
  10. Carpenter, S. K., Sachs, R. E., Martin, B., Schmidt, K., & Looft, R. (2012). Learning new vocabulary in German: the effects of inferring word meanings, type of feedback, and time of test. Psychonomic Bulletin & Review, 19, 81–86. doi: 10.3758/s13423-011-0185-7 CrossRefGoogle Scholar
  11. Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20, 633–642. doi: 10.3758/BF03202713 CrossRefGoogle Scholar
  12. Chan, J. C. K., & McDermott, K. B. (2007). The testing effect in recognition memory: A dual process account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 431–437. doi: 10.1037/0278-7393.33.2.431 PubMedGoogle Scholar
  13. Clare, L., & Jones, R. S. P. (2008). Errorless learning in the rehabilitation of memory impairment: A critical review. Neuropsychology Review, 18, 1–23. doi: 10.1007/s11065-008-9051-4 PubMedCrossRefGoogle Scholar
  14. Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407–428. doi: 10.1037/0033-295X.82.6.407 CrossRefGoogle Scholar
  15. Grimaldi, P. J., & Karpicke, J. D. (2012). When and why do retrieval attempts enhance subsequent encoding? Memory & Cognition, 40, 505–513. doi: 10.3758/s13421-011-0174-0 CrossRefGoogle Scholar
  16. Grüter, T., Lew-Williams, C., & Fernald, A. (2012). Grammatical gender in L2: A production or a real-time processing problem? Second Language Research, 28, 191–215.CrossRefGoogle Scholar
  17. Hammer, A., Mohammadi, B., Schmicker, M., Saliger, S., & Münte, T. F. (2011). Errorless and errorful learning modulated by transcranial direct current stimulation. BMC Neuroscience, 12, 72–79. doi: 10.1186/1471-2202-12-72 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Heldmann, M., Markgraf, U., Rodríguez-Fornells, A., & Münte, T. F. (2008). Brain potentials reveal the role of conflict in human errorful and errorless learning. Neuroscience Letters, 444, 64–68.PubMedCrossRefGoogle Scholar
  19. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  20. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi: 10.1037/0033-295X.109.4.679 PubMedCrossRefGoogle Scholar
  21. Huelser, B. J., & Metcalfe, J. (2012). Making related errors facilitates learning, but learners do not know it. Memory & Cognition, 40, 514–527. doi: 10.3758/s13421-011-0167-z CrossRefGoogle Scholar
  22. Kang, S. H. K., Pashler, H., Cepeda, N. J., Rohrer, D., Carpenter, S. K., & Mozer, M. C. (2011). Does incorrect guessing impair fact learning? Journal of Educational Psychology, 103, 48–59. doi: 10.1037/a0021977 CrossRefGoogle Scholar
  23. Karpicke, J. D., & Roediger, H. L., III. (2008). The critical importance of retrieval for learning. Science, 319, 966–968. doi: 10.1126/science.1152408 PubMedCrossRefGoogle Scholar
  24. Kiss, G. R., Armstrong, C., Milroy, R., & Piper, J. (1973). An associative thesaurus of English and its computer analysis. In A. J. Aitken, R. W. Bailey, & N. Hamilton-Smith (Eds.), The computer and literary studies (pp. 153–165). Edinburgh, UK: Edinburgh University Press.Google Scholar
  25. Knight, J. B., Ball, B. H., Brewer, G. A., DeWitt, M. R., & Marsh, R. L. (2012). Testing unsuccessfully: A specification of the underlying mechanisms supporting its influence on retention. Journal of Memory and Language, 66, 731–746. doi: 10.1016/j.jml.2011.12.008 CrossRefGoogle Scholar
  26. Koriat, A., & Goldsmith, M. (1996). Monitoring and control processes in strategic regulation of memory accuracy. Psychological Review, 103, 490–517. doi: 10.1037/0033-295X.103.3.490 PubMedCrossRefGoogle Scholar
  27. Kornell, N. (2014). Attempting to answer a meaningful question enhances subsequent learning even when feedback is delayed. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 106–114. doi: 10.1037/a0033699 PubMedGoogle Scholar
  28. Kornell, N., Hays, M. J., & Bjork, R. A. (2009). Unsuccessful retrieval attempts enhance subsequent learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 989–998. doi: 10.1037/a0015729 PubMedGoogle Scholar
  29. Larsen, D. P., Butler, A. C., & Roediger, H. L., III. (2009). Repeated testing improves long-term retention relative to repeated study: A randomised controlled trial. Medical Education, 43, 1174–1181.PubMedCrossRefGoogle Scholar
  30. Luque, D., López, F. J., Marco-Pallares, J., Càmara, E., & Rodríguez-Fornells, A. (2012). Feedback-related brain potential activity complies with basic assumptions of associative learning theory. Journal of Cognitive Neuroscience, 24, 794–808. doi: 10.1162/jocn_a_00145 PubMedCrossRefGoogle Scholar
  31. McDaniel, M. A., Kowitz, M. D., & Dunay, P. K. (1989). Altering memory through recall: The effects of cue-guided retrieval processing. Memory & Cognition, 17, 423–434. doi: 10.3758/BF03202614 CrossRefGoogle Scholar
  32. McDaniel, M. A., Roediger, H. L., III, & McDermott, K. B. (2007). Generalizing test-enhanced learning from the laboratory to the classroom. Psychonomic Bulletin & Review, 14, 200–206. doi: 10.3758/BF03194052 CrossRefGoogle Scholar
  33. Melinger, A., & Weber, A. (2006). Database of Noun Associations for German. Retrieved from www.coli.uni-saarland.de/projects/nag/
  34. Metcalfe, J., & Kornell, N. (2007). Principles of cognitive science in education: The effects of generation, errors, and feedback. Psychonomic Bulletin & Review, 14, 225–229. doi: 10.3758/BF03194056 CrossRefGoogle Scholar
  35. Nelson, D. L., Schreiber, T. A., & Xu, J. (1999). Cue set size effects: Sampling activated associates or cross-target interference? Memory & Cognition, 27, 465–477. doi: 10.3758/BF03211541 CrossRefGoogle Scholar
  36. Pashler, H., Zarow, G., & Triplett, B. (2003). Is temporal spacing of tests helpful even when it inflates error rates? Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 1051–1057. doi: 10.1037/0278-7393.29.6.1051 PubMedGoogle Scholar
  37. Pyc, M. A., & Rawson, K. A. (2010). Why testing improves memory: Mediator effectiveness hypothesis. Science, 330, 335. doi: 10.1126/science.1191465 PubMedCrossRefGoogle Scholar
  38. Reder, L. M., Nhouyvanisvong, A., Schunn, C. D., Ayers, M. S., Angstadt, P., & Hiraki, K. (2000). A mechanistic account of the mirror effect for word frequency: A computational model of remember–know judgments in a continuous recognition paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 294–320. doi: 10.1037/0278-7393.26.2.294 Google Scholar
  39. Reder, L. M., Paynter, C., Diana, R. A., Ngiam, J., & Dickison, D. (2007). Experience is a double-edged sword: A computational model of the encoding/retrieval trade-off with familiarity. In A. S. Benjamin & B. H. Ross (Eds.), Skill and strategy in memory use (The Psychology of Learning and Motivation (Vol. 48, pp. 271–312). London, UK: Academic Press.CrossRefGoogle Scholar
  40. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current theory and research (pp. 64–99). New York: Appleton-Century-Crofts.Google Scholar
  41. Rodriguez-Fornells, A., Kofidis, C., & Münte, T. F. (2004). An electrophysiological study of errorless learning. Cognitive Brain Research, 19, 160–173. doi: 10.1016/j.cogbrainres.2003.11.009 PubMedCrossRefGoogle Scholar
  42. Sabourin, L., Stowe, L. A., & De Haan, G. J. (2006). Transfer effects in learning a second language grammatical gender system. Second Language Research, 22, 1–29.CrossRefGoogle Scholar
  43. Terrace, H. S. (1963). Discrimination learning with and without “errors. Journal of the Experimental Analysis of Behavior, 6, 1–27. doi: 10.1901/jeab.1963.6-1 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Unsworth, N. (2009). Examining variation in working memory capacity and retrieval in cued recall. Memory, 17, 386–396. doi: 10.1080/09658210902802959 PubMedCrossRefGoogle Scholar
  45. Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498–505. doi: 10.3758/BF03192720 PubMedCrossRefGoogle Scholar
  46. van der Helden, J., Boksem, M. A. S., & Blom, J. H. G. (2010). The importance of failure: Feedback-related negativity predicts motor learning efficiency. Cerebral Cortex, 20, 1596–1603. doi: 10.1093/cercor/bhp224 PubMedCrossRefGoogle Scholar
  47. Vaughn, K. E., & Rawson, K. A. (2012). When is guessing incorrectly better than studying for enhancing memory? Psychonomic Bulletin & Review, 19, 899–905. doi: 10.3758/s13423-012-0276-0 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of Psychology, Experimental Neuropsychology UnitSaarland UniversitySaarbrückenGermany
  2. 2.Department of PsychologySaarland UniversitySaarbrückenGermany

Personalised recommendations