Advertisement

Memory & Cognition

, Volume 42, Issue 3, pp 481–495 | Cite as

Putting category learning in order: Category structure and temporal arrangement affect the benefit of interleaved over blocked study

  • Paulo F. Carvalho
  • Robert L. Goldstone
Article

Abstract

Recent research in inductive category learning has demonstrated that interleaved study of category exemplars results in better performance than does studying each category in separate blocks. However, the questions of how the category structure influences this advantage and how simultaneous presentation interacts with the advantage are open issues. In this article, we present three experiments. The first experiment indicates that the advantage of interleaved over blocked study is modulated by the structure of the categories being studied. More specifically, interleaved study results in better generalization for categories with high within- and between-category similarity, whereas blocked presentation results in better generalization for categories with low within- and between-category similarity. In Experiment 2, we present evidence that when presented simultaneously, between-category comparisons (interleaved presentation) result in a performance advantage for high-similarity categories, but no differences were found for low-similarity categories. In Experiment 3, we directly compared simultaneous and successive presentation of low-similarity categories. We again found an overall benefit for blocked study with these categories. Overall, these results are consistent with the proposal that interleaving emphasizes differences between categories, whereas blocking emphasizes the discovery of commonalities among objects within the same category.

Keywords

Interleaving Inductive learning Perceptual category learning Comparison 

Notes

Author Note

Research supported in part by National Science Foundation REESE Grant No. 0910218 and Department of Education IES Grant No. R305A1100060. P.F.C. was also supported by a Fulbright Research Fellowship and by Graduate Research Fellowship SFRH/BD/68554/2010 from the Portuguese Foundation for Science and Technology (FCT), co-financed by the European Social Fund. The authors thank Caitlin Fausey and Drew Hendrickson for helpful discussion and suggestions, and Rachel Selonick, Kelly Rapp, Spenser Benge, and Abigail Kost for their assistance with data collection.

Supplementary material

13421_2013_371_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)

References

  1. Andrews, J. K., Livingston, K. R., & Kurtz, K. J. (2010). Category learning in the context of co-presented items. Cognitive Processing, 12, 161–175.PubMedCrossRefGoogle Scholar
  2. Birnbaum, M. S., Kornell, N., Bjork, E. L., & Bjork, R. A. (2013). Why interleaving enhances inductive learning: The roles of discrimination and retrieval. Memory & Cognition, 41, 392–402. doi: 10.3758/s13421-012-0272-7 CrossRefGoogle Scholar
  3. Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185–205). Cambridge, MA: MIT Press.Google Scholar
  4. Blair, M. R., Watson, M. R., Walshe, R. C., & Maj, F. (2009). Extremely selective attention: Eye-tracking studies of the dynamic allocation of attention to stimulus features in categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1196–1206. doi: 10.1037/a0016272 PubMedGoogle Scholar
  5. Delaney, P. F., Verkoeijen, P. P. J. L., & Spirgel, A. (2010). Spacing and testing effects: A deeply critical, lengthy, and at times discursive review of the literature. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 53, pp. 63–147). San Diego, CA: Academic Press. doi: 10.1016/S0079-7421(10)53003-2 CrossRefGoogle Scholar
  6. Dwyer, D. M., Mundy, M. E., & Honey, R. C. (2011). The role of stimulus comparison in human perceptual learning: Effects of distractor placement. Journal of Experimental Psychology: Animal Behavior Processes, 37, 300–307. doi: 10.1037/a0023078 PubMedGoogle Scholar
  7. Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology. New York, NY: Teachers College, Columbia University.CrossRefGoogle Scholar
  8. Elio, R., & Anderson, J. R. (1981). The effects of category generalizations and instance similarity on schema abstraction. Journal of Experimental Psychology: Human Learning and Memory, 7, 397–417.Google Scholar
  9. Elio, R., & Anderson, J. R. (1984). The effects of information order and learning mode on schema abstraction. Memory & Cognition, 12, 20–30.CrossRefGoogle Scholar
  10. Gentner, D., & Namy, L. L. (1999). Comparison in the development of categories. Cognitive Development, 14, 487–513. doi: 10.1016/S0885-2014(99)00016-7 CrossRefGoogle Scholar
  11. Goldstone, R. L. (1996). Isolated and interrelated concepts. Memory & Cognition, 24, 608–628. doi: 10.3758/BF03201087 CrossRefGoogle Scholar
  12. Graham, S. A., Namy, L. L., Gentner, D., & Meagher, K. (2010). The role of comparison in preschoolers’ novel object categorization. Journal of Experimental Child Psychology, 107, 280–290. doi: 10.1016/j.jecp.2010.04.017 PubMedCrossRefGoogle Scholar
  13. Hammer, R., Bar-Hillel, A., Hertz, T., Weinshall, D., & Hochstein, S. (2008). Comparison processes in category learning: From theory to behavior. Brain Research, 1225, 102–118. doi: 10.1016/j.brainres.2008.04.079 PubMedCrossRefGoogle Scholar
  14. Hendrickson, A. T., Kachergis, G., Fausey, C. M., & Goldstone, R. L. (2012). Re-learning labeled categories reveals structured representations. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th annual conference of the cognitive science society (pp. 1668–1673). Austin, TX: Cognitive Science Society.Google Scholar
  15. Higgins, E. J., & Ross, B. H. (2011). Comparisons in category learning: How best to compare for what. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd annual conference of the cognitive science society (pp. 1388–1393). Austin, TX: Cogntive Science Society.Google Scholar
  16. Homa, D., & Chambliss, D. (1975). The relative contributions of common and distinctive information on the abstraction from ill-defined categories. Journal of Experimental Psychology: Human Learning and Memory, 104, 351–359. doi: 10.1037/0278-7393.1.4.351 Google Scholar
  17. Hull, C. L. (1920). Quantitative aspects of evolution of concepts. Psychological Monographs: General and Applied, 28, 1–86.CrossRefGoogle Scholar
  18. Jones, M., Love, B. C., & Maddox, W. T. (2006). Recency effects as a window to generalization: Separating decisional and perceptual sequential effects in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 316–332. doi: 10.1037/0278-7393.32.3.316 PubMedGoogle Scholar
  19. Jones, M., & Sieck, W. R. (2003). Learning myopia: An adaptive recency effect in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 626–640. doi: 10.1037/0278-7393.29.4.626 PubMedGoogle Scholar
  20. Kang, S. H. K., & Pashler, H. (2012). Learning painting styles: Spacing is advantageous when it promotes discriminative contrast. Applied Cognitive Psychology, 26, 97–103. doi: 10.1002/acp.1801 CrossRefGoogle Scholar
  21. Kornell, N. (2009). Optimising learning using flashcards: Spacing is more effective than cramming. Applied Cognitive Psychology, 23, 1297–1317. doi: 10.1002/acp.1537 CrossRefGoogle Scholar
  22. Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories: Is spacing the “enemy of induction”? Psychological Science, 19, 585–592. doi: 10.1111/j.1467-9280.2008.02127.x PubMedCrossRefGoogle Scholar
  23. Kornell, N., Castel, A. D., Eich, T. S., & Bjork, R. A. (2010). Spacing as the friend of both memory and induction in young and older adults. Psychology and Aging, 25, 498–503. doi: 10.1037/a0017807 PubMedCrossRefGoogle Scholar
  24. Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67, 2797–2822.CrossRefGoogle Scholar
  25. Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44. doi: 10.1037/0033-295X.99.1.22 PubMedCrossRefGoogle Scholar
  26. Kurtz, K. H., & Hovland, C. I. (1956). Concept learning with differing sequences of instances. Journal of Experimental Psychology, 51, 239–243. doi: 10.1037/h0040295 PubMedCrossRefGoogle Scholar
  27. Lee, E. S., MacGregor, J. N., Bavelas, A., & Mirlin, L. (1988). The effects of error transformations on classification performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 66–74. doi: 10.1037/0278-7393.14.1.66 Google Scholar
  28. Lipsitt, L. P. (1961). Simultaneous and successive discrimination-learning in children. Child Development, 32, 337–347.PubMedGoogle Scholar
  29. Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309–332. doi: 10.1037/0033-295X.111.2.309 PubMedCrossRefGoogle Scholar
  30. MacCaslin, E. (1954). Successive and simultaneous discrimination as a function of stimulus-similarity. American Journal of Psychology, 67, 308–314.PubMedCrossRefGoogle Scholar
  31. Markman, A. B., & Ross, B. H. (2003). Category use and category learning. Psychological Bulletin, 129, 592–613. doi: 10.1037/0033-2909.129.4.592 PubMedCrossRefGoogle Scholar
  32. Mathy, F., & Feldman, J. (2009). A rule-based presentation order facilitates category learning. Psychonomic Bulletin & Review, 16, 1050–1057. doi: 10.3758/PBR.16.6.1050 CrossRefGoogle Scholar
  33. Minda, J. P., & Smith, J. D. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 275–292. doi: 10.1037/0278-7393.28.2.275 PubMedGoogle Scholar
  34. Mitchell, C., Nash, S., & Hall, G. (2008). The intermixed-blocked effect in human perceptual learning is not the consequence of trial spacing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 237–242.PubMedGoogle Scholar
  35. Mundy, M. E., Honey, R. C., & Dwyer, D. M. (2007). Simultaneous presentation of similar stimuli produces perceptual learning in human picture processing. Journal of Experimental Psychology: Animal Behavior Processes, 33, 124–138. doi: 10.1037/0097-7403.33.2.124 PubMedGoogle Scholar
  36. Mundy, M. E., Honey, R. C., & Dwyer, D. M. (2008). Superior discrimination between similar stimuli after simultaneous exposure. Quarterly Journal of Experimental Psychology, 62, 18–25.CrossRefGoogle Scholar
  37. Namy, L. L., & Gentner, D. (2002). Making a silk purse out of two sow’s ears: Young children’s use of comparison in category learning. Journal of Experimental Psychology, 131, 5–15.PubMedCrossRefGoogle Scholar
  38. Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General, 115, 39–61. doi: 10.1037/0096-3445.115.1.39 CrossRefGoogle Scholar
  39. Proctor, R. W. (1980). The influence of intervening tasks on the spacing effect for frequency judgments. Journal of Experimental Psychology: Human Learning and Memory, 6, 254–266. doi: 10.1037/0278-7393.6.3.254 Google Scholar
  40. Rieber, M. (1966). Role of stimulus comparison in children’s discrimination learning. Journal of Experimental Psychology, 72, 263–270.PubMedCrossRefGoogle Scholar
  41. Rohrer, D., & Pashler, H. (2010). Recent research on human learning challenges conventional instructional strategies. Educational Researcher, 39, 406–412. doi: 10.3102/0013189X10374770 CrossRefGoogle Scholar
  42. Sandhofer, C. M., & Doumas, L. (2008). Order of presentation effects in learning color categories. Journal of Cognition and Development, 9, 194–221. doi: 10.1080/15248370802022639 CrossRefGoogle Scholar
  43. Sims, C. E., & Colunga, E. (2010). When comparison helps: The role of language, prior knowledge and similarity in categorizing novel objects. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 339–404). Austin, TX: Cognitive Science Society.Google Scholar
  44. Spalding, T. L., & Ross, B. H. (1994). Comparison-based learning—effects of comparing instances during category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1251–1263.PubMedGoogle Scholar
  45. Spiering, B. J., & Ashby, F. G. (2008). Initial training with difficult items facilitates information integration, but not rule-based category learning. Psychological Science, 19, 1169–1177.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Stewart, N., & Brown, G. D. A. (2004). Sequence effects in the categorization of tones varying in frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 416–430. doi: 10.1037/0278-7393.30.2.416 PubMedGoogle Scholar
  47. Stewart, N., Brown, G. D. A., & Chater, N. (2002). Sequence effects in categorization of simple perceptual stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 3–11. doi: 10.1037/0278-7393.28.1.3 PubMedGoogle Scholar
  48. Stewart, N., & Chater, N. (2002). The effect of category variability in perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 893–907.PubMedGoogle Scholar
  49. Taylor, K., & Rohrer, D. (2010). The effects of interleaved practice. Applied Cognitive Psychology, 24, 837–848.CrossRefGoogle Scholar
  50. Vlach, H. A., Ankowski, A. A., & Sandhofer, C. M. (2012). At the same time or apart in time? The role of presentation timing and retrieval dynamics in generalization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 246–254. doi: 10.1037/a0025260 PubMedCentralPubMedGoogle Scholar
  51. Vlach, H. A., Sandhofer, C. M., & Kornell, N. (2008). The spacing effect in children’s memory and category induction. Cognition, 109, 163–167. doi: 10.1016/j.cognition.2008.07.013 PubMedCrossRefGoogle Scholar
  52. Wahlheim, C. N., Dunlosky, J., & Jacoby, L. L. (2011). Spacing enhances the learning of natural concepts: An investigation of mechanisms, metacognition, and aging. Memory & Cognition, 39, 750–763. doi: 10.3758/s13421-010-0063-y CrossRefGoogle Scholar
  53. Whitman, J. R., & Garner, W. R. (1963). Concept learning as a function of form of internal structure. Journal of Verbal Learning and Verbal Behavior, 2, 195–202.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations