Memory & Cognition

, Volume 42, Issue 1, pp 112–125 | Cite as

The effect of newly trained verbal and nonverbal labels for the cues in probabilistic category learning

  • Fotis A. FotiadisEmail author
  • Athanassios Protopapas


Learning in a well-established paradigm of probabilistic category learning, the weather prediction task, has been assumed to be mediated by a variety of strategies reflecting explicit learning processes, such as hypothesis testing, when it is administered to young healthy participants. Higher categorization accuracy has been observed in the task when explicit processes are facilitated. We hypothesized that furnishing verbal labels for the cues would boost the formation, testing, and application of verbal rules, leading to higher categorization accuracy. We manipulated the availability of cue names by training separate groups of participants for three consecutive days to associate hard-to-name artificial auditory cues to pseudowords or to hard-to-name ideograms, or to associate stimulus intensity with colors; a fourth group remained unexposed to the cues. Verbal labels, cue individuation, and exposure to the stimulus set each had an additive effect on categorization performance in a subsequent 200-trial session of the weather prediction task using these auditory cues. This study suggests that cue nameability, when controlled for cue individuation and cue familiarity, has an effect on hypothesis-testing processes underlying category learning.


Categorization Training Memory Verbal labels 


Author note

We thank George Gyftodimos for suggesting the idea of new names for the auditory cues, Eleni Vlahou for help with DMDX programming and preprocessing of the data, Lori Holt and Sung-joo Lim for providing the frequency-modulated tones, Martijn Meeter for providing the order of the trials in the WPT and for comments on an earlier draft, Catherine Myers for help with the literature, Maarten Van Casteren for adapting the MIX program to facilitate advanced trial randomization, Jonathan C. Forster for technical advice on DMDX remote-testing mode, and all of the ling-r-lang-L mailing list subscribers (especially Florian Jaeger) for advice on the statistical analyses. We also thank Argiro Vatakis and all of the members of the Language and Learning Lab at the University of Athens for help with recruiting participants.

Supplementary material

13421_2013_350_MOESM1_ESM.doc (31 kb)
ESM 1 (DOC 31 kb)


  1. Abu-Shaba, N., Myers, C. E., Shohamy, D., & Gluck, M. A. (2001). Age effects in probabilistic category learning. Unpublished manuscript. Newark: Rutgers University.Google Scholar
  2. Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in Cognitive Sciences, 11, 458–465. doi: 10.1016/j.tics.2007.08.015 PubMedCrossRefGoogle Scholar
  3. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481. doi: 10.1037/0033-295X.105.3.442 PubMedCrossRefGoogle Scholar
  4. Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149–178. doi: 10.1146/annurev.psych.56.091103.070217 PubMedCrossRefGoogle Scholar
  5. Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224, 147–161. doi: 10.1111/j.1749-6632.2010.05874.x PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412. doi: 10.1016/j.jml.2007.12.005 CrossRefGoogle Scholar
  8. Bates, D., & Sarkar, D. (2007). lme4: Linear mixed-effects models using S4 classes (R package version 0.99875-6). Retrieved from
  9. Conway, C. M., & Christiansen, M. H. (2009). Seeing and hearing in space and time: Effects of modality and presentation rate on implicit statistical learning. European Journal of Cognitive Psychology, 21, 561–580. doi: 10.1080/09541440802097951 CrossRefGoogle Scholar
  10. Development Core Team, R. (2011). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from Scholar
  11. Dickerson, K. C., Li, J., & Delgado, M. R. (2011). Parallel contributions of distinct human memory systems during probabilistic learning. NeuroImage, 55, 266–276. doi: 10.1016/j.neuroimage.2010.10.080 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dixon, P. (2008). Models of accuracy in repeated-measures designs. Journal of Memory and Language, 59, 447–456. doi: 10.1016/j.jml.2007.11.004 CrossRefGoogle Scholar
  13. Dunn, J. C., & Kirsner, K. (2003). What can we infer from double dissociations? Cortex, 39, 1–7. doi: 10.1016/S0010-9452(08)70070-4 PubMedCrossRefGoogle Scholar
  14. Dunn, J. C., Newell, B. R., & Kalish, M. L. (2012). The effect of feedback delay and feedback type on perceptual category learning: The limits of multiple systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 840–859. doi: 10.1037/a0027867 PubMedGoogle Scholar
  15. Edworthy, J., & Hards, R. (1999). Learning auditory warnings: The effects of sound type verbal labelling and imagery on the identification of alarm sounds. International Journal of Industrial Ergonomics, 24, 603–618.CrossRefGoogle Scholar
  16. Foerde, K., Knowlton, B. J., & Poldrack, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Academy of Science, 103, 11778–11783. doi: 10.1073/pnas.0602659103 CrossRefGoogle Scholar
  17. Foerde, K., Poldrack, R. A., & Knowlton, B. J. (2007). Secondary task effects on classification learning. Memory & Cognition, 35, 864–874. doi: 10.3758/BF03193461 CrossRefGoogle Scholar
  18. Foerde, K., & Shohamy, D. (2011). Feedback timing modulates brain systems for learning in humans. Journal of Neuroscience, 31, 13157–13167. doi: 10.1523/JNEUROSCI.2701-11.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Folstein, J., Palmeri, T. J., & Gauthier, I. (2010). Mere exposure alters category learning of novel objects. Frontiers in Psychology, 1, 1–6. doi: 10.3389/fpsyg.2010.00040 Google Scholar
  20. Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116–124. doi: 10.3758/BF03195503 CrossRefGoogle Scholar
  21. Fotiadis, F. A., Protopapas, A., & Vatakis, A. (2011). The effect of cue naming in probabilistic category learning. In B. Kokinov, A. Karmiloff-Smith, & N. J. Nersessian (Eds.), European perspectives on cognitive science: Proceedings of the European Conference on Cognitive Science—EuroCogSci 2011. Sofia: New Bulgarian University Press.Google Scholar
  22. Galizio, M., & Baron, A. (1976). Label training and auditory categorization. Learning and Motivation, 7, 591–602. doi: 10.1016/0023-9690(76)90009-6 CrossRefGoogle Scholar
  23. Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology. General, 117, 227–247. doi: 10.1037/0096-3445.117.3.227 PubMedCrossRefGoogle Scholar
  24. Gluck, M. A., Shohamy, D., & Myers, C. E. (2002). How do people solve the “weather prediction” task? Individual variability in strategies for probabilistic classification learning. Learning and Memory, 9, 408–418. doi: 10.1101/lm.45202 PubMedCrossRefGoogle Scholar
  25. Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology. General, 123, 178–200. doi: 10.1037/0096-3445.123.2.178 PubMedCrossRefGoogle Scholar
  26. Goldstone, R. L., & Steyvers, M. (2001). The sensitization and differentiation of dimensions during category learning. Journal of Experimental Psychology. General, 130, 116–139. doi: 10.1037110096-3445.130.1.116 PubMedCrossRefGoogle Scholar
  27. Holt, L., & Lotto, A. J. (2006). Cue weighting in auditory categorization: Implication for first and second language acquisition. Journal of the Acoustical Society of America, 119, 3059–3071. doi: 10.1121/1.2188377 PubMedCrossRefGoogle Scholar
  28. Hopkins, R. O., Myers, C. E., Shohamy, D., Grossman, S., & Gluck, M. A. (2004). Impaired probabilistic category learning in hypoxic subjects with hippocampal damage. Neuropsychologia, 42, 524–535. doi: 10.1016/j.neuropsychologia.2003.09.005 PubMedCrossRefGoogle Scholar
  29. Hulme, C., Goetz, K., Gooch, D., Adams, J., & Snowling, M. J. (2007). Paired-associate learning, phoneme awareness, and learning to read. Journal of Experimental Child Psychology, 96, 150–166. doi: 10.1016/j.jecp.2006.09.002 PubMedCrossRefGoogle Scholar
  30. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446. doi: 10.1016/j.jml.2007.11.007 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402. doi: 10.1126/science.273.5280.1399 PubMedCrossRefGoogle Scholar
  32. Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning and Memory, 1, 106–120. doi: 10.1101/lm.1.2.106 PubMedGoogle Scholar
  33. Lagnado, D. A., Newell, B. R., Kahan, S., & Shanks, D. R. (2006). Insight and strategy in multiple-cue learning. Journal of Experimental Psychology. General, 135, 162–183. doi: 10.1037/0096-3445.135.2.162 PubMedCrossRefGoogle Scholar
  34. Lupyan, G. (2006). Labels facilitate learning of novel categories. In A. Cangelosi, A. D. M. Smith, & K. Smith (Eds.), The Sixth International Conference on the Evolution of Language (pp. 190–197). Singapore: World Scientific.Google Scholar
  35. Lupyan, G. (2008). From chair to “chair”: A representational shift account of object labeling effects on memory. Journal of Experimental Psychology. General, 137, 348–369. doi: 10.1037/0096-3445.137.2.348 PubMedCrossRefGoogle Scholar
  36. Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language is not just for talking: Redundant labels facilitate learning of novel categories. Psychological Science, 18, 1077–1083. doi: 10.1111/j.1467-9280.2007.02028.x PubMedCrossRefGoogle Scholar
  37. Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback effects on rule-based and information-integration category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 650–662. doi: 10.1037/0278-7393.29.4.650 PubMedGoogle Scholar
  38. Maddox, W. T., & Ing, A. D. (2005). Delayed feedback disrupts the procedural-learning system but not the hypothesis-testing system in perceptual category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 100–107. doi: 10.1037/0278- 7393.31.1.100 PubMedGoogle Scholar
  39. Meeter, M., Myers, C. E., Shohamy, D., Hopkins, R. O., & Gluck, M. A. (2006). Strategies in probabilistic categorization: Results from a new way of analyzing performance. Learning and Memory, 13, 230–239. doi: 10.1101/lm.43006 PubMedCrossRefGoogle Scholar
  40. Meeter, M., Radics, G., Myers, C. E., Gluck, M. A., & Hopkins, R. O. (2008). Probabilistic categorization: How do normal participants and amnesic patients do it? Neuroscience and Biobehavioural Reviews, 32, 237–248. doi: 10.1016/j.neubiorev.2007.11.001 CrossRefGoogle Scholar
  41. Miles, S. J., & Minda, J. P. (2011). The effect of concurrent verbal and visual tasks on category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 588–607. doi: 10.1037/a0022309 PubMedGoogle Scholar
  42. Minda, J. P., & Miles, S. J. (2010). The influence of verbal and nonverbal processing on category learning. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 52, pp. 117–162). San Diego: Academic Press. doi: 10.1016/S0079-7421(10)52003-6 CrossRefGoogle Scholar
  43. Newell, B. R., & Dunn, J. C. (2008). Dimensions in data: Testing psychological models using state-trace analysis. Trends in Cognitive Sciences, 12, 285–290. doi: 10.1016/j.tics.2008.04.009 PubMedCrossRefGoogle Scholar
  44. Newell, B. R., Dunn, J. C., & Kalish, M. (2010). The dimensionality of perceptual category learning: A state-trace analysis. Memory & Cognition, 38, 563–581. doi: 10.3758/MC.38.5.563 CrossRefGoogle Scholar
  45. Newell, B. R., Dunn, J. C., & Kalish, M. (2011). Systems of category learning: Fact or fantasy? In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 54, pp. 167–215). San Diego: Academic Press. doi: 10.1016/B978-0-12-385527-5.00006-1 Google Scholar
  46. Newell, B. R., Lagnado, D. A., & Shanks, D. R. (2007). Challenging the role of implicit processes in probabilistic category learning. Psychonomic Bulletin and Review, 14, 505–511. doi: 10.3758/BF03194098 PubMedCrossRefGoogle Scholar
  47. Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Creso, J., Myers, C. E., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. doi: 10.1038/35107080 PubMedCrossRefGoogle Scholar
  48. Poldrack, R. A., & Foerde, K. (2008). Category learning and the memory system debate. Neuroscience and Biobehavioral Reviews, 32, 197–205. doi: 10.1016/j.neubiorev.2007.07.007 PubMedCrossRefGoogle Scholar
  49. Poldrack, R. A., & Rodriguez, P. (2004). How do memory systems interact? Evidence from human classification learning. Neurobiology of Learning and Memory, 82, 324–332. doi: 10.1016/j.nlm.2004.05.003 PubMedCrossRefGoogle Scholar
  50. Price, A. L. (2009). Distinguishing the contributions of implicit and explicit processes to performance of the weather prediction task. Memory & Cognition, 37, 210–222. doi: 10.3758/MC.37.2.210 CrossRefGoogle Scholar
  51. Protopapas, A., Tzakosta, M., Chalamandaris, A., & Tsiakoulis, P. (2012). IPLR: An online resource for Greek word-level and sublexical information. Language Resources and Evaluation, 46, 449–459. doi: 10.1007/s10579-010-9130-z CrossRefGoogle Scholar
  52. Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: Differences in the flexibility of declarative and nondeclarative knowledge. Behavioral Neuroscience, 110, 861–871. doi: 10.1037/0735-7044.110.5.861 PubMedCrossRefGoogle Scholar
  53. Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: Determining what is learned about sequence structure. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 585–594. doi: 10.1037/0278-7393.20.3.585 Google Scholar
  54. Saffran, J. R. (2002). Constraints on statistical language learning. Journal of Memory and Language, 47, 172–196. doi: 10.1006/jmla.2001.2839 CrossRefGoogle Scholar
  55. Shohamy, D., Myers, C. E., Kalanithi, J., & Gluck, M. A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32, 219–236. doi: 10.1016/j.neubiorev.2007.07.008 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Shohamy, D., Myers, C. E., Onlaor, S., & Gluck, M. A. (2004). Role of the basal ganglia in category learning: How do patients with Parkinson’s disease learn? Behavioral Neuroscience, 118, 676–686. doi: 10.1037/0735-7044.118.4.676 PubMedCrossRefGoogle Scholar
  57. Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82, 171–177. doi: 10.1016/j.nlm.2004.06.005 PubMedCrossRefGoogle Scholar
  58. Sturges, J., & Whitfield, T. W. A. (1995). Locating basic colours in the Munsell space. Color Research and Application, 20, 364–376. doi: 10.1002/col.5080200605 CrossRefGoogle Scholar
  59. Tan, L. H., Chan, A. H. D., Kay, P., Khong, P.-L., Yip, L. K. C., & Luke, K.-K. (2008). Language affects patterns of brain activation associated with perceptual decision. Proceedings of the National Academy of Sciences, 105, 4004–4009. doi: 10.1073/pnas.0800055105 CrossRefGoogle Scholar
  60. Van Casteren, M., & Davis, M. H. (2006). Mix, a program for pseudorandomization. Behavior Research Methods, 38, 584–589. doi: 10.3758/BF03193889 PubMedCrossRefGoogle Scholar
  61. Worthy, D. A., Markman, A. B., & Maddox, W. T. (2013). Feedback and stimulus-offset timing effects in perceptual category learning. Brain and Cognition, 81, 283–293. doi: 10.1016/j.bandc.2012.11.006 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Yan, J., Qiu, Y., Zhu, Y., & Tong, S. (2010). Mental rotation differences between Chinese characters and English letters. Neuroscience Letters, 479, 146–151. doi: 10.1016/j.neulet.2010.05.051 PubMedCrossRefGoogle Scholar
  63. Yarkoni, T., Balota, D. A., & Yap, M. J. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin and Review, 15, 971–979. doi: 10.3758/PBR.15.5.971 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.Department of Philosophy & History of ScienceUniversity of AthensAthensGreece

Personalised recommendations