Coffee time: Low caffeine dose promotes attention and focus in zebrafish

  • Julia Ruiz-Oliveira
  • Priscila Fernandes Silva
  • Ana Carolina LuchiariEmail author


In this study we investigated the ability of zebrafish to discriminate visual signs and associate them with a reward in an associative-learning protocol including distractors. Moreover, we studied the effects of caffeine on animal performance in the task. After being trained to associate a specific image pattern with a reward (food) in the presence of other, distractor images, the fish were challenged to locate the exact cue associated with the reward. The distractors were same-colored pattern images similar to the target. Both the target and distractors were continually moved around the tank. Fish were exposed to three caffeine concentrations for 14 days: 0 mg/L (control, n = 12), 10 mg/L (n = 14), and 50 mg/L (n = 14). Zebrafish spent most of the time close to the target (where the reward was offered) under the effects of 0 and 10 mg/L caffeine, and the shortest latency to reach the target was observed for the 10-mg/L caffeine group. Both caffeine treatments (10 and 50 mg/L) increased the average speed and distance traveled when compared to the control group. This study confirms previous results showing that zebrafish demonstrate conditioned learning ability; however, low-dose caffeine exposure seems to favor visual cue discrimination and to increase zebrafish performance in a multicue discrimination task, in which primarily focus and attention are required in order to obtain the reward.


Adenosine antagonist Vision Conditioned learning Associative learning 



  1. Acquas, E., Tanda, G., & Di Chiara, G. (2002). Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacology, 27, 182–193.CrossRefGoogle Scholar
  2. Al-Imari, L., & Gerlai, R. (2008). Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behavioural Brain Research, 189, 216–219.CrossRefGoogle Scholar
  3. Angelucci, M. E. M., Cesario, C., Hiroi, R. H., Rosalen, P. L., & Cunha, C. D. (2002). Effects of caffeine on learning and memory in rats tested in the Morris water maze. Brazilian Journal of Medical and Biological Research, 35, 1201–1208.CrossRefGoogle Scholar
  4. Barbazuk, W. B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., … Johnson, S. L. (2000). The synthenic relationship of the zebrafish and human genomes. Genome Research, 10, 1351–1358. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. CrossRefGoogle Scholar
  6. Benowitz, N. L. (2008). Neurobiology of nicotine addiction: Implications for smoking cessation treatment. American Journal of Medicine, 121, S3–S10.CrossRefGoogle Scholar
  7. Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B, 26, 211–246.Google Scholar
  8. Braubach, O. R., Wood, H.-D., Gadbois, S., Fine, A., & Croll, R. P. (2009). Olfactory conditioning in the zebrafish (Danio rerio). Behavioural Brain Research, 198, 190–198.CrossRefGoogle Scholar
  9. Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., & Taylor, H. A. (2010). Caffeine modulates attention network function. Brain and Cognition, 72, 181–188.CrossRefGoogle Scholar
  10. Butt, M. S., & Sultan, M. T. (2011). Coffee and its consumption: Benefits and risks. Critical Reviews in Food Science and Nutrition, 51, 363–373.CrossRefGoogle Scholar
  11. Caramillo, E. M., Khan, K. M., Collier, A. D., & Echevarria, D. J. (2015). Modeling PTSD in the zebrafish: Are we there yet? Behavioural Brain Research, 276, 151–160. CrossRefPubMedGoogle Scholar
  12. Carter, A. J., O’Connor, W. T., Carter, M. J., & Ungerstedt, U. (1995). Caffeine enhances acetylcholine release in the hippocampus in vivo by a selective interaction with adenosine A1 receptors. Journal of Pharmacology and Experimental Therapeutics, 273, 637–642.PubMedGoogle Scholar
  13. Chacon, D. M., & Luchiari, A. C. (2014). A dose for the wiser is enough: The alcohol benefits for associative learning in zebrafish. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 53, 109–115. CrossRefPubMedGoogle Scholar
  14. Claghorn, G. C., Thompson, Z., Wi, K., Van, L., & Garland, T., Jr. (2017). Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity. Physiology and Behavior, 170, 133–140.CrossRefGoogle Scholar
  15. Dagan, Y., & Doljansky, J. T. (2006). Cognitive performance during sustained wakefulness: A low dose of caffeine is equally effective as modafinil in alleviating the nocturnal decline. Chronobiology International, 23, 973–983.CrossRefGoogle Scholar
  16. De Luca, M. A., Bassareo, V., Bauer, A., & Di Chiara, G. (2007). Caffeine and accumbens shell dopamine. Journal of Neurochemistry, 103, 157–163.PubMedGoogle Scholar
  17. Einöther, S. J. L., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: Reviewing existing assumptions. Psychopharmacology, 225, 251–274.CrossRefGoogle Scholar
  18. Ferré, S. (2008). An update on the mechanisms of the psychostimulant effects of caffeine. Journal of Neurochemistry, 105, 1067–1079.CrossRefGoogle Scholar
  19. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62, 2320–2327. CrossRefPubMedGoogle Scholar
  20. Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health benefits of methylxanthines in cacao and chocolate. Nutrients, 5, 4159–4173.CrossRefGoogle Scholar
  21. Franke, A. G., Bagusat, C., Rust, S., Engel, A., & Lieb, K. (2014). Substances used and prevalence rates of pharmacological cognitive enhancement among healthy subjects. European Archives of Psychiatry and Clinical Neuroscience, 264, S83–S90.CrossRefGoogle Scholar
  22. Fredholm, B. B., Bättig, K., Holmén, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51, 83–133.PubMedGoogle Scholar
  23. Gerlai, R., Lahav, M., Guo, S., & Rosenthal, A. (2000). Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacology Biochemistry and Behavior, 67, 773–782. CrossRefGoogle Scholar
  24. Gómez-Laplaza, L. M., & Gerlai, R. (2010). Latent learning in zebrafish (Danio rerio). Behavioural Brain Research, 208, 509–515.CrossRefGoogle Scholar
  25. Hameleers, P. A. H., Van Boxtel, M. P., Hogervorst, E., Riedel, W. J., Houx, P. J., Buntinx, F., & Jolles, J. (2000). Habitual caffeine consumption and its relation to memory, attention, planning capacity and psychomotor performance across multiple age groups. Human Psychopharmacology: Clinical and Experimental, 15, 573–581.CrossRefGoogle Scholar
  26. Herlenius, E., & Lagercrantz, H. (2004). Development of neurotransmitter systems during critical periods. Experimental Neurology, 190, 8–21.CrossRefGoogle Scholar
  27. Johnson, K., Aidman, E., Paech, G.M., Pajcin, M., Grant, C., LaValle, C., … Banks, S. (2016). Early morning repeat-dose caffeine mitigates driving performance impairments during 50 hours of sleep deprivation. Road and Transport Research, 25, 3–15.Google Scholar
  28. Karnik, I., & Gerlai, R. (2012). Can zebrafish learn spatial tasks? An empirical analysis of place and single CS-US associative learning. Behavioural Brain Research, 233, 415–421. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lenth, R. V., & Hervé, M. (2014). lsmeans: Least-squares means (R package version 2.11). Retrieved from
  30. Lieberman, H. R. (1992). Caffeine. In D. Jones & A. Smith (Eds.), Factors affecting human performance, Vol. II. London, UK: Academic Press.Google Scholar
  31. Liu, S., Yao, S., & Spence, A. (2014). Comparison of caffeine and music as fatigue countermeasures in simulated driving tasks. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 58, pp. 2373–2377). Los Angeles, CA: Sage.Google Scholar
  32. Luchiari, A. C., & Chacon, D. M. M. (2013). Physical exercise improves learning in zebrafish, Danio rerio. Behavioural Processes, 100, 44–47. CrossRefPubMedGoogle Scholar
  33. Marin, M.-F., Lord, C., Andrews, J., Juster, R.-P., Sindi, S., Arsenault-Lapierre, G., … Lupien, S. J. (2011). Chronic stress, cognitive functioning and mental health. Neurobiology of Learning and Memory, 96, 583–595.CrossRefGoogle Scholar
  34. Murray, T. F., Blaker, W. D., Cheney, D. L., & Costa, E. (1982). Inhibition of acetylcholine turnover rate in rat hippocampus and cortex by intraventricular injection of adenosine analogs. Journal of Pharmacology and Experimental Therapeutics, 222, 550–554.PubMedGoogle Scholar
  35. Pinheiro-da-Silva, J., Silva, P. F., Nogueira, M. B., & Luchiari, A. C. (2017). Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio). Animal Cognition, 20, 159–169. CrossRefPubMedGoogle Scholar
  36. R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
  37. Rosa, L. V., Ardais, A. P., Costa, F. V., Fontana, B. D., Quadros, V. A., Porciúncula, L. O., & Rosemberg, D. B. (2018). Different effects of caffeine on behavioral neurophenotypes of two zebrafish populations. Pharmacology Biochemistry and Behavior, 165, 1–8. CrossRefGoogle Scholar
  38. Santos, L. C., Oliveira, J. R., Oliveira, J. J., Silva, P. F., & Luchiari, A. C. (2016). Irish coffee: Effects of alcohol and caffeine on object discrimination in zebrafish. Pharmacology Biochemistry and Behavior, 143, 34–43. CrossRefGoogle Scholar
  39. Santos, L. C., Ruiz-Oliveira, J., Silva, P. F., & Luchiari, A. C. (2017). Caffeine dose–response relationship and behavioral screening in zebrafish. In J. N. Latosińska (Ed.), The question of caffeine (pp. 87–105). Rijeka, Croatia: InTech. CrossRefGoogle Scholar
  40. Silveira, M. M., Oliveira, J. J., & Luchiari, A. C. (2015). Dusky damselfish Stegastes fuscus relational learning: Evidences from associative and spatial tasks. Journal of Fish Biology, 86, 1109–1120. CrossRefPubMedGoogle Scholar
  41. Smith, A. (2002). Effects of caffeine on human behavior. Food and Chemical Toxicology, 40, 1243–1255.CrossRefGoogle Scholar
  42. Souissi, M., Chtourou, H., Abedelmalek, S., Ghozlane, I. B., & Sahnoun, Z. (2014). The effects of caffeine ingestion on the reaction time and short-term maximal performance after 36 h of sleep deprivation. Physiology and Behavior, 131, 1–6. CrossRefPubMedGoogle Scholar
  43. Thiele, A., & Bellgrove, M. A. (2018). Neuromodulation of attention. Neuron, 97, 769–785. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tran, S., & Gerlai, R. (2014). Recent advances with a novel model organism: Alcohol tolerance and sensitization in zebrafish (Danio rerio). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 55, 87–93. CrossRefPubMedGoogle Scholar
  45. Wood, S., Sage, J. R., Shuman, T., & Anagnostaras, S. G. (2014). Psychostimulants and cognition: A continuum of behavioral and cognitive activation. Pharmacological Reviews, 66, 193–221.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Julia Ruiz-Oliveira
    • 1
  • Priscila Fernandes Silva
    • 2
  • Ana Carolina Luchiari
    • 1
    Email author
  1. 1.Department of Physiology and Behavior, Bioscience CenterUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Department of BiosciencesSwansea UniversitySwanseaUK

Personalised recommendations