Advertisement

Learning & Behavior

, Volume 46, Issue 4, pp 561–573 | Cite as

Separate brain areas for processing human and dog faces as revealed by awake fMRI in dogs (Canis familiaris)

  • Andie M. Thompkins
  • Bhavitha Ramaiahgari
  • Sinan Zhao
  • Sai Sheshan Roy Gotoor
  • Paul Waggoner
  • Thomas S. Denney
  • Gopikrishna Deshpande
  • Jeffrey S. KatzEmail author
Article

Abstract

Functional magnetic resonance imaging (fMRI) has emerged as a viable method to study the neural processing underlying cognition in awake dogs. Working dogs were presented with pictures of dog and human faces. The human faces varied in familiarity (familiar trainers and unfamiliar individuals) and emotional valence (negative, neutral, and positive). Dog faces were familiar (kennel mates) or unfamiliar. The findings revealed adjacent but separate brain areas in the left temporal cortex for processing human and dog faces in the dog brain. The human face area (HFA) and dog face area (DFA) were both parametrically modulated by valence indicating emotion was not the basis for the separation. The HFA and DFA were not influenced by familiarity. Using resting state fMRI data, functional connectivity networks (connectivity fingerprints) were compared and matched across dogs and humans. These network analyses found that the HFA mapped onto the human fusiform area and the DFA mapped onto the human superior temporal gyrus, both core areas in the human face processing system. The findings provide insight into the evolution of face processing.

Keywords

fMRI Connectivity Dog cognition Dog neuroimaging Face processing 

Supplementary material

13420_2018_352_MOESM1_ESM.docx (200 kb)
Fig. S1 (DOCX 200 kb)
13420_2018_352_MOESM2_ESM.docx (227 kb)
Fig. S2 (DOCX 226 kb)
13420_2018_352_MOESM3_ESM.docx (163 kb)
Fig. S3 (DOCX 163 kb)

References

  1. Albuquerque, N., Guo, K., Wilkinson, A., Savalli, C., Otta, E., & Mills, D. (2016). Dogs recognize dog and human emotions. Biology Letters, 12(1), 20150883.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andics, A., Gácsi, M., Faragó, T., Kis, A., & Miklósi, Á. (2014). Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Current Biology, 24(5), 574-578.CrossRefGoogle Scholar
  3. Andics, A., Gábor, A., Gácsi, M., Faragó, T., Szabó, D., & Miklósi, Á. (2016). Neural mechanisms for lexical processing in dogs. Science, 353(6303), 1030-1032.CrossRefPubMedGoogle Scholar
  4. Arcaro, M. J., Schade, P.F., Vincent, J. L., Ponce, C. R., & Livingstone, M. S. (2017). Seeing faces is necessary for face-domain formation. Nature Neuroscience, 20, 1404-1412.  https://doi.org/10.1038/nn.4635 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barber, A. L., Randi, D., Müller, C. A., & Huber, L. (2016). The processing of human emotional faces by pet and lab dogs: evidence for lateralization and experience effects. PloS one, 11(4).CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berns, G. S., Brooks, A. M., & Spivak, M. (2012). Functional MRI in awake unrestrained dogs. PloS one, 7(5), e38027.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berns, G. S., Brooks, A. M., & Spivak, M. (2015). Scent of the familiar: an fMRI study of canine brain responses to familiar and unfamiliar human and dog odors. Behavioural Processes, 110, 37-46.CrossRefPubMedGoogle Scholar
  8. Berns, G. S., & Cook, P. F. (2016). Why did the dog walk into the MRI?. Current Directions in Psychological Science, 25(5), 363-369.CrossRefGoogle Scholar
  9. Bernstein, M., & Yovel, G. (2015). Two neural pathways of face processing: a critical evaluation of current models. Neuroscience & Biobehavioral Reviews, 55, 536-546.CrossRefGoogle Scholar
  10. Bloom, T., & Friedman, H. (2013). Classifying dogs’(Canis familiaris) facial expressions from photographs. Behavioural Processes, 96, 1-10.CrossRefPubMedGoogle Scholar
  11. Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327.CrossRefPubMedGoogle Scholar
  12. Bunford, N., Andics, A., Kis, A., Miklósi, Á., & Gácsi, M. (2017). Canis familiaris as a Model for Non-Invasive Comparative Neuroscience. Trends in Neurosciences, 40(7), 438-452.CrossRefPubMedGoogle Scholar
  13. Calder, A. J., & Young, A. W. (2005). Understanding the recognition of facial identity and facial expression. Nature Reviews Neuroscience, 6(8), 641.CrossRefPubMedGoogle Scholar
  14. Cook, P. F., Spivak, M., & Berns, G. S. (2014). One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament. PeerJ, 2, e596.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cuaya, L. V., Hernández-Pérez, R., & Concha, L. (2016). Our faces in the dog's brain: Functional imaging reveals temporal cortex activation during perception of human faces. PloS one, 11(3).CrossRefPubMedPubMedCentralGoogle Scholar
  16. di Oleggio Castello, M. V., Halchenko, Y. O., Guntupalli, J. S., Gors, J. D., & Gobbini, M. I. (2017). The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception. Scientific Reports, 7(1), 12237.Google Scholar
  17. Dilks, D. D., Cook, P., Weiller, S. K., Berns, H. P., Spivak, M., & Berns, G. S. (2015). Awake fMRI reveals a specialized region in dog temporal cortex for face processing. PeerJ, 3.Google Scholar
  18. Duchaine, B., & Yovel, G. (2015). A revised neural framework for face processing. Annual Review of Vision Science, 1, 393-416.CrossRefPubMedGoogle Scholar
  19. Dufour, V., Pascalis, O., & Petit, O. (2006). Face processing limitation to own species in primates: a comparative study in brown capuchins, Tonkean macaques and humans. Behavioural Processes, 73(1), 107-113.CrossRefPubMedGoogle Scholar
  20. Fox, P. T., Parsons, L. M., & Lancaster, J. L. (1998). Beyond the single study: function/location metanalysis in cognitive neuroimaging. Current Opinion in Neurobiology, 8(2), 178-187.CrossRefPubMedGoogle Scholar
  21. Freiwald, W., Duchaine, B., & Yovel, G. (2016). Face processing systems: from neurons to real-world social perception. Annual Review of Neuroscience, 39, 325-346.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191.CrossRefPubMedGoogle Scholar
  23. Hare, B., Brown, M., Williamson, C., & Tomasello, M. (2002). The domestication of social cognition in dogs. Science, 298(5598), 1634-1636.CrossRefGoogle Scholar
  24. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223-233CrossRefPubMedGoogle Scholar
  25. Huber, L., Racca, A., Scaf, B., Virányi, Z., & Range, F. (2013). Discrimination of familiar human faces in dogs (Canis familiaris). Learning and motivation, 44(4), 258-269.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jia, H., Pustovyy, O. M., Waggoner, P., Beyers, R. J., Schumacher, J., Wildey, C., … Vodyanoy, V. J. (2014). Functional MRI of the olfactory system in conscious dogs. PLoS One, 9(1).CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jia, H., Pustovyy, O. M., Wang, Y., Waggoner, P., Beyers, R. J., Schumacher, J., … Vodyanoy, V. J. (2015). Enhancement of odor-induced activity in the canine brain by zinc nanoparticles: A functional MRI study in fully unrestrained conscious dogs. Chemical Senses, 41(1), 53-67.CrossRefPubMedGoogle Scholar
  28. Kaminski, J., Riedel, J., Call, J., & Tomasello, M. (2005). Domestic goats, Capra hircus, follow gaze direction and use social cues in an object choice task. Animal Behaviour, 69(1), 11-18.CrossRefGoogle Scholar
  29. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302-4311.CrossRefPubMedGoogle Scholar
  30. Kendrick, K. M., da Costa, A. P., Leigh, A. E., Hinton, M. R., & Peirce, J. W. (2001). Sheep don't forget a face. Nature, 414, 165-166.CrossRefGoogle Scholar
  31. Kyathanahally, S. P., Jia, H., Pustovyy, O. M., Waggoner, P., Beyers, R., Schumacher, J., … Vodyanoy, V. J. (2015). Anterior–posterior dissociation of the default mode network in dogs. Brain Structure and Function, 220(2), 1063-1076.CrossRefPubMedGoogle Scholar
  32. Lyn, H., Russell, J. L., & Hopkins, W. D. (2010). The impact of environment on the comprehension of declarative communication in apes. Psychological Science, 21(3), 360-365.CrossRefPubMedGoogle Scholar
  33. Mars RB, Neubert FX, Verhagen L, Sallet J, Miller KL, Dunbar RIM, & Barton RA (2014). Primate comparative neuroscience using magnetic resonance imaging: Promises and challenges. Frontiers in Neuroscience, 8, 298.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mars RB, Sallet J, Neubert FX, & Rushworth MFS. 2013.Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proceedings of the National Academy of Sciences, 110, 10806-10811.CrossRefGoogle Scholar
  35. Mars RB, Verhagen L, Gladwin TE, Neubert FX, Sallet J, & Rushworth MFS (2016). Comparing brains by matching connectivity fingerprints. Neuroscience and Biobehavioral Reviews, 60, 90-97.CrossRefPubMedGoogle Scholar
  36. McKinley, J., & Sambrook, T. D. (2000). Use of human-given cues by domestic dogs () and horses (Equus caballus). Animal Cognition, 3(1), 13-22.CrossRefGoogle Scholar
  37. Miklósi, Á., & Topál, J. (2013). What does it take to become ‘best friends’? Evolutionary changes in canine social competence. Trends in Cognitive Sciences, 17(6), 287-294.CrossRefGoogle Scholar
  38. Müller, C. A., Schmitt, K., Barber, A. L., & Huber, L. (2015). Dogs can discriminate emotional expressions of human faces. Current Biology, 25(5), 601-605.CrossRefGoogle Scholar
  39. Nagasawa, M., Murai, K., Mogi, K., & Kikusui, T. (2011). Dogs can discriminate human smiling faces from blank expressions. Animal Cognition, 14(4), 525-533.CrossRefGoogle Scholar
  40. Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25(3), 653-660.CrossRefPubMedGoogle Scholar
  41. O’Toole, A.J., Roark, D.A., Abdi, H., 2002. Recognizing moving faces: a psychological and neural synthesis. Trends in Cognitive Sciences, 6, 261–266.CrossRefPubMedGoogle Scholar
  42. Paller, K. A., Ranganath, C., Gonsalves, B., LaBar, K. S., Parrish, T. B., Gitelman, D. R., … Reber, P. J. (2003). Neural correlates of person recognition. Learning & Memory, 10(4), 253-260.CrossRefGoogle Scholar
  43. Pascalis, O., & Bachevalier, J. (1998). Face recognition in primates: a cross-species study. Behavioural Processes, 43(1), 87-96.CrossRefPubMedGoogle Scholar
  44. Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Review Neuroscience, 3(8), 606–16.CrossRefGoogle Scholar
  45. Patronek, G. J., Waters, D. J., & Glickman, L. T. (1997). Comparative longevity of pet dpgs and humans: Implication for gerontology research. Journal of Gerontology: Biological Sciences, 52A(3), B171–B178.Google Scholar
  46. Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536-551.CrossRefPubMedGoogle Scholar
  47. Racca, A., Guo, K., Meints, K., & Mills, D. S. (2012). Reading faces: differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children. PLoS one, 7(4).CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ramaihgari B., Pustovyy, O.M., Waggoner, P., Beyers, R.J., Wildey, C., Morrison, E., Salibi, N., Katz, J.S., Denney, T.S., Vodyanoy, V.J., & Deshpande G. (2018). Zinc Nanoparticles Enhance Brain Connectivity in the Canine Olfactory Network: Evidence From an fMRI Study in Unrestrained Awake Dogs. Frontiers in Veterinary Science. 5:127. doi:  https://doi.org/10.3389/fvets.2018.00127 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Siniscalchi, M., d’Ingeo, S., Fornelli, S., & Quaranta, A. (2018). Lateralized behavior and cardiac activity of dogs in response to human emotional vocalizations. Scientific Reports, 8(1), 77.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sliwa, J., Planté, A., Duhamel, J. R., & Wirth, S. (2014). Independent neuronal representation of facial and vocal identity in the monkey hippocampus and inferotemporal cortex. Cerebral Cortex, 26(3), 950-966.CrossRefPubMedGoogle Scholar
  51. Smith SM, Andersson J, Auerbach EJ, Beckmann CF, Bijsterbosch J, Douaud G, Duff E, Feinberg DA, Griffanti L, Harms MP, Kelly M, Laumann T, Miller KL, Moeller S, Petersen SE, Power J, Salimi-Khorshidi G, Snyder AZ, Vu A, Woolrich MW, Xu J, Yacoub E, Ŭgurbil K, Van Essen DC, Glasser MF (2013). Resting-state fMRI in the Human Connectome Project. NeuroImage, 80, 144-168.Google Scholar
  52. Stoeckel, L. E., Palley, L. S., Gollub, R. L., Niemi, S. M., & Evins, A. E. (2014). Patterns of brain activation when mothers view their own child and dog: An fMRI study. PLoS One, 9(10).CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thalmann, O., Shapiro, B., Cui, P., Schuenemann, V. J., Sawyer, S. K., Greenfield, D. L., … Napierala, H. (2013). Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science, 342(6160), 871-874.CrossRefPubMedGoogle Scholar
  54. Thompkins, A.M. (2016). Investigating the Dog-Human Social Bond via Behavioral and fMRI Methodologies (Doctoral dissertation). Auburn University, AL.Google Scholar
  55. Thompkins, A. M., Deshpande, G., Waggoner, P., & Katz, J. S. (2016). Functional Magnetic Resonance Imaging of the Domestic Dog: Research, Methodology, and Conceptual Issue. Comparative Cognition & Behavior Reviews, 11, 63-82.CrossRefGoogle Scholar
  56. Weiner, K.S., Barnett, M. A., Lorenz, S., Caspers, J., Stigliani, A., Amunts, K., Zilles, K., Fischl, B., & Grill-Spector, K. (2017). The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex. Cerebral Cortex, 27, 146–161,  https://doi.org/10.1093/cercor/bhw361 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Andie M. Thompkins
    • 1
    • 2
  • Bhavitha Ramaiahgari
    • 3
  • Sinan Zhao
    • 3
  • Sai Sheshan Roy Gotoor
    • 3
  • Paul Waggoner
    • 4
  • Thomas S. Denney
    • 1
    • 3
    • 5
    • 6
  • Gopikrishna Deshpande
    • 1
    • 3
    • 5
    • 6
    • 7
  • Jeffrey S. Katz
    • 1
    • 3
    • 5
    • 6
    Email author
  1. 1.Department of PsychologyAuburn UniversityAuburnUSA
  2. 2.Hand in Paw, Inc.BirminghamUSA
  3. 3.AU MRI Research Center, Department of Electrical & Computer EngineeringAuburn UniversityAuburnUSA
  4. 4.Canine Detection Research InstituteAuburn UniversityAuburnUSA
  5. 5.Alabama Advanced Imaging ConsortiumAuburn University and University of Alabama BirminghamBirminghamUSA
  6. 6.Center for NeuroscienceAuburn UniversityAuburnUSA
  7. 7.Center for Health Ecology and Equity ResearchAuburn UniversityAuburnUSA

Personalised recommendations