Advertisement

Brain oscillatory activity of skill and chance gamblers during a slot machine game

  • Helena Alicart
  • Ernest Mas-Herrero
  • Xavier Rifà-Ros
  • David Cucurell
  • Josep Marco-PallarésEmail author
Research Article
  • 9 Downloads

Abstract

Gambling behavior presents a broad variety of individual differences, with a continuum ranging from nongamblers to pathological gamblers. The reward network has been proposed to be critical in gambling behavior, but little is known about the behavioral and neural mechanisms underlying individual differences that depend on gambling preference. The main goals of the present study were to explore brain oscillatory responses to gambling outcomes in regular gamblers and to assess differences between strategic gamblers, nonstrategic gamblers, and nongamblers. In all, 54 healthy volunteers participated in the study. Electroencephalography was recorded while participants were playing a slot machine task that delivered win, near-miss, and full-miss outcomes. Behaviorally, regular gamblers selected a larger percentage of risky bets, especially when they could select the image to play. The time–frequency results showed larger oscillatory theta power increases to near-misses and increased beta power to win outcomes for regular gamblers, as compared to nongamblers. Moreover, theta oscillatory activity after wins was only increased in nonstrategic gamblers, revealing differences between the two groups of gamblers. The present results reveal differences between regular gamblers and nongamblers in both their behavioral and neural responses to gambling outcomes. Moreover, the results suggest that different brain oscillatory mechanisms might underlie the studied gambling profiles, which might have implications for both basic and clinical studies.

Keywords

Beta Gambling Near-miss Oscillations Reward Theta 

Notes

References

  1. Alicart, H., Cucurell, D., Mas-Herrero, E., & Marco-Pallarés, J. (2015). Human oscillatory activity in near-miss events. Social Cognitive and Affective Neuroscience, 10, 1405–1412. doi: https://doi.org/10.1093/scan/nsv033 CrossRefGoogle Scholar
  2. Andreou, C., Frielinghaus, H., Rauh, J., Mußmann, M., Vauth, S., Braun, P., . . . Mulert, C. (2017). Theta and high-beta networks for feedback processing: A simultaneous EEG–fMRI study in healthy male subjects. Translational Psychiatry, 7, e1016. doi: https://doi.org/10.1038/tp.2016.287
  3. Binde, P. (2005). Gambling, exchange systems, and moralities. Journal of Gambling Studies, 21, 445–479. doi: https://doi.org/10.1007/s10899-005-5558-2 CrossRefGoogle Scholar
  4. Breen, R. B., & Zimmerman, M. (2002). Rapid onset of pathological gambling in machine gamblers. Journal of Gambling Studies, 18, 31–43.  https://doi.org/10.1023/A:1014580112648 CrossRefGoogle Scholar
  5. Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49, 3198–3209. doi: https://doi.org/10.1016/j.neuroimage.2009.11.080 CrossRefGoogle Scholar
  6. Chase, H. W., & Clark, L. (2010). Gambling severity predicts midbrain response to near-miss outcomes. Journal of Neuroscience, 30, 6180–6187. doi: https://doi.org/10.1523/JNEUROSCI.5758-09.2010 CrossRefGoogle Scholar
  7. Clark, L., Lawrence, A. J., Astley-Jones, F., & Gray, N. (2009). Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron, 61, 481–490. doi: https://doi.org/10.1016/j.neuron.2008.12.031 CrossRefGoogle Scholar
  8. Clark, L., Crooks, B., Clarke, R., Aitken, M. R. F., & Dunn, B. D. (2012). Physiological responses to near-miss outcomes and personal control during simulated gambling. Journal of Gambling Studies, 28, 123–137. doi: https://doi.org/10.1007/s10899-011-9247-z CrossRefGoogle Scholar
  9. Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 35, 968–978. doi: https://doi.org/10.1016/j.neuroimage.2006.11.056 CrossRefGoogle Scholar
  10. Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127–142. doi: https://doi.org/10.1016/j.brainres.2008.07.114 CrossRefGoogle Scholar
  11. Côté, D., Caron, A., Aubert, J., Desrochers, V., & Ladouceur, R. (2003). Near wins prolong gambling on a video lottery terminal. Journal of Gambling Studies, 19, 433–438.CrossRefGoogle Scholar
  12. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi: https://doi.org/10.1016/j.jneumeth.2003.10.009 CrossRefGoogle Scholar
  13. Doñamayor, N., Marco-Pallarés, J., Heldmann, M., Schoenfeld, M. A., & Münte, T. F. (2011). Temporal dynamics of reward processing revealed by magnetoencephalography. Human Brain Mapping, 32, 2228–2240. doi: https://doi.org/10.1002/hbm.21184 CrossRefGoogle Scholar
  14. Dymond, S., Lawrence, N. S., Dunkley, B. T., Yuen, K. S. L., Hinton, E. C., Dixon, M. R., . . . Singh, K. D. (2014). Almost winning: Induced MEG theta power in insula and orbitofrontal cortex increases during gambling near-misses and is associated with BOLD signal and gambling severity. NeuroImage, 91, 210–219. doi: https://doi.org/10.1016/j.neuroimage.2014.01.019
  15. Goodie, A. S. (2005). The role of perceived control and overconfidence in pathological gambling. Journal of Gambling Studies, 21, 481–502. doi: https://doi.org/10.1007/s10899-005-5559-1 CrossRefGoogle Scholar
  16. Grant, J. E., Odlaug, B. L., Chamberlain, S. R., & Schreiber, L. R. N. (2012). Neurocognitive dysfunction in strategic and non-strategic gamblers. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 38, 336–340. doi: https://doi.org/10.1016/j.pnpbp.2012.05.006 CrossRefGoogle Scholar
  17. Griffiths, M. (1991). Interdisciplinary and applied psychobiology of the near-miss in fruit machine gambling. Journal of Psychology, 125, 347–57. doi: https://doi.org/10.1080/00223980.1991.10543298 CrossRefGoogle Scholar
  18. Habib, R., & Dixon, M. R. (2010). Neurobehavioral evidence for the “Near-Miss” effect in pathological gamblers. Journal of the Experimental Analysis of Behavior, 93, 313–328. doi: https://doi.org/10.1901/jeab.2010.93-313 CrossRefGoogle Scholar
  19. HajiHosseini, A., Rodríguez-Fornells, A., & Marco-Pallarés, J. (2012) The role of beta-gamma oscillations in unexpected rewards processing. NeuroImage, 60, 1678–1685. doi: https://doi.org/10.1016/j.neuroimage.2012.01.125 CrossRefGoogle Scholar
  20. Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G. H., Holroyd, C. B., & Miltner, W. H. R. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67, 781–783. doi: https://doi.org/10.1016/j.biopsych.2009.11.009 CrossRefGoogle Scholar
  21. IBM Corp. (2015). IBM SPSS Statistics for Windows (Version 23.0). Armonk, NY: IBM Corp.Google Scholar
  22. Kassinove, J. I., & Schare, M. L. (2001). Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychology of Addictive Behaviors, 15, 155–158.CrossRefGoogle Scholar
  23. Kessler, R. C., Hwang, I., LaBrie, R., Petukhova, M., Sampson, N. A., Winters, K. C., & Shaffer, H. J. (2008). DSM-IV pathological gambling in the National Comorbidity Survey Replication. Psychological Medicine, 38, 1351–1360. doi: https://doi.org/10.1017/S0033291708002900 Google Scholar
  24. Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32, 311–328. doi: https://doi.org/10.1037/0022-3514.32.2.311 CrossRefGoogle Scholar
  25. Ledgerwood D. M., & Petry N. M. (2006). Psychological experience of gambling and subtypes of pathological gamblers. Psychiatry Research, 144, 17–27. doi: https://doi.org/10.1016/j.psychres.2005.08.017 CrossRefGoogle Scholar
  26. Leotti, L. A., & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22, 1310–1318. doi: https://doi.org/10.1177/0956797611417005 CrossRefGoogle Scholar
  27. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188. doi: https://doi.org/10.1176/ajp.144.9.1184 CrossRefGoogle Scholar
  28. Lorains, F. K., Dowling, N. A., Enticott, P. G., Bradshaw, J. L., Trueblood, J. S., & Stout, J. C. (2014). Strategic and non-strategic problem gamblers differ on decision-making under risk and ambiguity. Addiction, 109, 1128–1137. doi: https://doi.org/10.1111/add.12494 CrossRefGoogle Scholar
  29. Lorenz, R. C., Gleich, T., Kühn, S., Pöhland, L., Pelz, P., Wüstenberg, T., . . . Beck, A. (2015). Subjective illusion of control modulates striatal reward anticipation in adolescence. NeuroImage, 117, 250–257. doi: https://doi.org/10.1016/j.neuroimage.2015.05.024
  30. Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115, 1821–1835. doi: https://doi.org/10.1016/j.clinph.2004.03.031 CrossRefGoogle Scholar
  31. Marco-Pallarés, J., Cucurell, D., Cunillera, T., García, R., Andrés-Pueyo, A., Münte, T. F., & Rodríguez-Fornells, A. (2008). Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia, 46, 241–248. doi: https://doi.org/10.1016/j.neuropsychologia.2007.07.016 CrossRefGoogle Scholar
  32. Marco-Pallarés, J., Cucurell, D., Cunillera, T., Krämer, U. M., Càmara, E., Nager, W., . . . Rodríguez-Fornells, A. (2009). Genetic variability in the dopamine system (dopamine receptor D4, catechol-O-methyltransferase) modulates neurophysiological responses to gains and losses. Biological Psychiatry, 66, 154–161. doi: https://doi.org/10.1016/j.biopsych.2009.01.006
  33. Marco-Pallarés, J., Münte, T. F., & Rodríguez-Fornells, A. (2015). The role of high-frequency oscillatory activity in reward processing and learning. Neuroscience & Biobehavioral Reviews, 49, 1–7. doi: https://doi.org/10.1016/j.neubiorev.2014.11.014 CrossRefGoogle Scholar
  34. Mas-Herrero, E., & Marco-Pallarés, J. (2014). Frontal theta oscillatory activity is a common mechanism for the computation of unexpected outcomes and learning rate. Journal of Cognitive Neuroscience, 26, 447–458. doi: https://doi.org/10.1162/jocn_a_00516 CrossRefGoogle Scholar
  35. Mas-Herrero, E., & Marco-Pallarés, J. (2016). Theta oscillations integrate functionally segregated sub-regions of the medial prefrontal cortex. NeuroImage, 143, 166–174. doi: https://doi.org/10.1016/j.neuroimage.2016.08.024 CrossRefGoogle Scholar
  36. Mas-Herrero, E., Ripollés, P., HajiHosseini, A., Rodríguez-Fornells, A., & Marco-Pallarés, J. (2015). Beta oscillations and reward processing: Coupling oscillatory activity and hemodynamic responses. NeuroImage, 119, 13–19. doi: https://doi.org/10.1016/j.neuroimage.2015.05.095 CrossRefGoogle Scholar
  37. Myrseth, H., Brunborg, G., & Eidem, M. (2010). Differences in cognitive distortions between pathological and non-pathological gamblers with preferences for chance or skill games. Journal of Gambling Studies, 26, 561–569. doi: https://doi.org/10.1007/s10899-010-9180-6 CrossRefGoogle Scholar
  38. Oberg, S. A., Christie, G. J., & Tata, M. S. (2011). Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia, 49, 3768–3775. doi: https://doi.org/10.1016/j.neuropsychologia.2011.09.037 CrossRefGoogle Scholar
  39. Odlaug, B. L., Marsh, P. J., Kim, S. W., & Grant, J. E. (2011). Strategic vs. nonstrategic gambling: Characteristics of pathological gamblers based on gambling preference. Annals of Clinical Psychiatry, 23, 105–112.Google Scholar
  40. Orgaz, C., Estévez, A., & Matute, H. (2013). Pathological gamblers are more vulnerable to the illusion of control in a standard associative learning task. Frontiers in Psychology, 4, 306. doi: https://doi.org/10.3389/fpsyg.2013.00306 CrossRefGoogle Scholar
  41. Petry, N. M., Stinson, F. S., & Grant, B. F. (2005). Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Journal of Clinical Psychiatry, 66, 564–574.CrossRefGoogle Scholar
  42. Potenza, M. N., Steinberg, M. A., McLaughlin, S. D., Wu, R., Rounsaville, B. J., & O’Malley, S. S. (2001). Gender-related differences in the characteristics of problem gamblers using a gambling helpline. American Journal of Psychiatry, 158, 1500–1505.  https://doi.org/10.1176/appi.ajp.158.9.1500 CrossRefGoogle Scholar
  43. Sescousse, G., Janssen, L. K., Hashemi, M. M., Timmer, M. H. M., Geurts, D. E. M., ter Huurne, N. P., . . . Cools, R. (2016). Amplified striatal responses to near-miss outcomes in pathological gamblers. Neuropsychopharmacology, 41, 2614–2623. doi: https://doi.org/10.1038/npp.2016.43
  44. Shen, Y., Kairouz, S., Nadeau, L., & Robillard, C. (2015). Comparing problem gamblers with moderate-risk gamblers in a sample of university students. Journal of Behavioral Addictions, 4, 53–59. doi: https://doi.org/10.1556/2006.4.2015.002 CrossRefGoogle Scholar
  45. Ulrich, N., & Hewig, J. (2014). A miss is as good as a mile? Processing of near and full outcomes in a gambling paradigm. Psychophysiology, 51, 819–823.  https://doi.org/10.1111/psyp.12232 CrossRefGoogle Scholar
  46. Valleur, M., Codina, I., Vénisse, J.-L., Romo, L., Magalon, D., Fatséas, M., . . . Challet-Bouju, G. (2016). Towards a validation of the three pathways model of pathological gambling. Journal of Gambling Studies, 32, 757–771. doi: https://doi.org/10.1007/s10899-015-9545-y CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Helena Alicart
    • 1
  • Ernest Mas-Herrero
    • 1
    • 2
  • Xavier Rifà-Ros
    • 1
    • 3
  • David Cucurell
    • 1
    • 4
  • Josep Marco-Pallarés
    • 1
    • 3
    Email author
  1. 1.Cognition and Brain Plasticity Group, Bellvitge Biomedical Research InstituteLʼHospitalet de LlobregatBarcelonaSpain
  2. 2.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, Campus BellvitgeUniversity of Barcelona, LʼHospitalet de LlobregatBarcelonaSpain
  4. 4.Fundació Bosch i GimperaBarcelonaSpain

Personalised recommendations