Advertisement

Functional connectivity between memory and reward centers across task and rest track memory sensitivity to reward

  • Lea E. Frank
  • Alison R. Preston
  • Dagmar ZeithamovaEmail author
Special Issue/Reward Systems, Cognition,and Emotion

Abstract

External motivation, such as a promise of future monetary reward for remembering an event, can affect which events are remembered. Reward-based memory modulation is thought to result from encoding and post-encoding interactions between dopaminergic midbrain, signaling reward, and hippocampus and parahippocampal cortex, supporting episodic memory. We asked whether hippocampal and parahippocampal interactions with other reward-related regions are related to reward modulation of memory and whether such relationships are stable over time. Individuals’ memory sensitivity to reward was measured using a monetary incentive encoding task in which a cue indicated potential monetary reward (penny, dime, or dollar) for remembering an upcoming object pair. Functional connectivity between memory and reward regions was measured before, during, and following the task. Reward-related regions of interest were generated using a meta-analysis of existing studies on reward and included ventral striatum, medial and orbital prefrontal cortices and anterior cingulate cortex, in addition to midbrain. The results showed that connectivity between memory and reward regions tracked individual differences in reward modulation of memory, irrespective of when connectivity was measured. Connectivity patterns of anterior cingulate, orbitofrontal cortex, and ventral striatum covaried together and tracked behavior most strongly. These findings implicate a broader set of reward regions in reward modulation of memory than considered previously and provide new evidence that stable connectivity patterns between memory and reward centers relate to individual differences in how reward impacts memory.

Keywords

Episodic memory Functional connectivity Hippocampus Motivation Reward Prefrontal cortex 

Notes

Acknowledgments

This work was supported by a National Science Foundation CAREER Award BCS 1056019 (ARP), NIH-NIMH R01 MH100121 (ARP), and NIH-NIMH National Research Service Award F32 MH094085 (DZ). The authors declare no competing financial interests.

References

  1. Abler, B., Walter, H., Erk, S., Kammerer, H., & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. NeuroImage, 31(2), 790–795.  https://doi.org/10.1016/j.neuroimage.2006.01.001 Google Scholar
  2. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–517.  https://doi.org/10.1016/j.neuron.2006.03.036 Google Scholar
  3. Amiez, C., Joseph, J. P., & Procyk, E. (2006). Reward encoding in the monkey anterior cingulate cortex. Cerebral Cortex, 16(7), 1040–1055.  https://doi.org/10.1093/cercor/bhj046 Google Scholar
  4. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.  https://doi.org/10.1016/j.neuroimage.2013.02.063 Google Scholar
  5. Bialleck, K. A., Schaal, H.-P., Kranz, T. A., Fell, J., Elger, C. E., & Axmacher, N. (2011). Ventromedial prefrontal cortex activation is associated with memory formation for predictable rewards. PLoS One, 6(2), e16695.  https://doi.org/10.1371/journal.pone.0016695 Google Scholar
  6. Blessing, E. M., Beissner, F., Schumann, A., Brünner, F., & Bär, K. J. (2016). A data-driven approach to mapping cortical and subcortical intrinsic functional connectivity along the longitudinal hippocampal axis. Human Brain Mapping, 37(2), 462–476.  https://doi.org/10.1002/hbm.23042 Google Scholar
  7. Boorman, E. D., Behrens, T. E. J., Woolrich, M. W., & Rushworth, M. F. S. (2009). How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron, 62(5), 733–743.  https://doi.org/10.1016/j.neuron.2009.05.014 Google Scholar
  8. Bowman, C.R. & Zeithamova, D. (2018). Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. Journal of Neuroscience, 38(10), 2605-2614Google Scholar
  9. Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z. X., … Moscovitch, M. (2018). Multiple scales of representation along the hippocampal anteroposterior axis in humans. Current Biology, 28(13), 2129–2135.e6.  https://doi.org/10.1016/j.cub.2018.05.016
  10. Camara, E., Rodriguez-Fornells, A., & Münte, T. F. (2009). Functional connectivity of reward processing in the brain. Frontiers in Human Neuroscience, 2(19), 1–14.  https://doi.org/10.3389/neuro.09.019.2008 Google Scholar
  11. Cao, W., Luo, C., Zhu, B., Zhang, D., Dong, L., Gong, J., … Yao, D. (2014). Resting-state functional connectivity in anterior cingulate cortex in normal aging. Frontiers in Aging Neuroscience, 6(OCT), 1–7.  https://doi.org/10.3389/fnagi.2014.00280
  12. Doll, B. B., Shohamy, D., & Daw, N. D. (2015). Multiple memory systems as substrates for multiple decision systems. Neurobiology of Learning and Memory, 117(9), 4–13.  https://doi.org/10.1016/j.nlm.2014.04.014 Google Scholar
  13. Duncan, K., Tompary, A., & Davachi, L. (2014). Associative encoding and retrieval are predicted by functional connectivity in distinct hippocampal area CA1 pathways. Journal of Neuroscience, 34(34), 11188–98.  https://doi.org/10.1523/JNEUROSCI.0521-14.2014 Google Scholar
  14. Elliott, R., Agnew, Z., & Deakin, J. F. W. (2008). Medial orbitofrontal cortex codes relative rather than absolute value of financial rewards in humans. European Journal of Neuroscience, 27(9), 2213–2218.  https://doi.org/10.1111/j.1460-9568.2008.06202.x Google Scholar
  15. Elliott, R., Newman, J. L., Longe, O. A., & Deakin, J. F. (2003). Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: A parametric functional magnetic resonance imaging study. Journal of Neuroscience, 23(1), 303–307.Google Scholar
  16. Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting : identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664–1671.  https://doi.org/10.1038/nn.4135
  17. Fiorillo, Christopher D, Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward dopamine neurons. Science, 299(March), 1898–1902.  https://doi.org/10.1126/science.1077349 Google Scholar
  18. Gerraty, R. T., Davidow, J. Y., Wimmer, G. E., Kahn, I., & Shohamy, D. (2014). Transfer of learning relates to intrinsic connectivity between hippocampus, ventromedial prefrontal cortex, and large-scale networks. Journal of Neuroscience, 34(34), 11297–11303.  https://doi.org/10.1523/JNEUROSCI.0185-14.2014 Google Scholar
  19. Gluth, S., Sommer, T., Rieskamp, J., & Büchel, C. (2015). Effective connectivity between hippocampus and ventromedial prefrontal cortex controls preferential choices from memory. Neuron, 86(4), 1078–1090.  https://doi.org/10.1016/j.neuron.2015.04.023 Google Scholar
  20. Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439–452.e5.  https://doi.org/10.1016/j.neuron.2018.03.035
  21. Gruber, M. J., Ritchey, M., Wang, S. F., Doss, M. K., & Ranganath, C. (2016). Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron, 89(5), 1110–1120.  https://doi.org/10.1016/j.neuron.2016.01.017 Google Scholar
  22. Hamann, J. M., Dayan, E., Hummel, F. C., & Cohen, L. G. (2014). Baseline frontostriatal-limbic connectivity predicts reward-based memory formation. Human Brain Mapping, 35(12), 5921–5931.  https://doi.org/10.1002/hbm.22594 Google Scholar
  23. Hare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W., & Rangel, A. (2008). Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. Journal of Neuroscience, 28(22), 5623–5630.  https://doi.org/10.1523/JNEUROSCI.1309-08.2008 Google Scholar
  24. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106(6), 2035–2040.  https://doi.org/10.1073/pnas.0811168106 Google Scholar
  25. Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 1625–1633.  https://doi.org/10.1038/nn2007 Google Scholar
  26. Kafkas, A., & Montaldi, D. (2015). Striatal and midbrain connectivity with the hippocampus selectively boosts memory for contextual novelty. Hippocampus, 25(11), 1262–1273.  https://doi.org/10.1002/hipo.22434 Google Scholar
  27. Kahn, I., & Shohamy, D. (2013). Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus, 23(3), 187–192.  https://doi.org/10.1002/hipo.22077 Google Scholar
  28. Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLoS Biology, 9(12).  https://doi.org/10.1371/journal.pbio.1001224
  29. Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed Neural representation of expected value. Journal of Neuroscience, 25(19), 4806–4812.  https://doi.org/10.1523/JNEUROSCI.0642-05.2005 Google Scholar
  30. Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 34(10), 536–547.  https://doi.org/10.1016/j.tins.2011.07.006 Google Scholar
  31. Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron, 46(5), 703–713.  https://doi.org/10.1016/j.neuron.2005.05.002 Google Scholar
  32. Luk, C.-H., & Wallis, J. D. (2013). Choice coding in frontal cortex during stimulus-guided or action-guided decision-making. Journal of Neuroscience, 33(5), 1864–1871.  https://doi.org/10.1523/JNEUROSCI.4920-12.2013 Google Scholar
  33. Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2007). Mapping the functional connectivity of anterior cingulate cortex. NeuroImage, 37(2), 579–588.  https://doi.org/10.1016/j.neuroimage.2007.05.019 Google Scholar
  34. McKenzie, S., Frank, A. J., Kinsky, N. R., Porter, B., Rivière, P. D., & Eichenbaum, H. (2014). Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron, 83(1), 202–215.  https://doi.org/10.1016/j.neuron.2014.05.019 Google Scholar
  35. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel A., & Leisch, F. (2017). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8. https://CRAN.R-project.org/package=e1071
  36. Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivation on human declarative memory. Neuroscience and Biobehavioral Reviews, 61, 156–176.  https://doi.org/10.1016/j.neubiorev.2015.11.015 Google Scholar
  37. Montague, P., Dayan, P., & Sejnowski, T. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of Neuroscience, 16(5), 1936–1947.  https://doi.org/10.1523/JNEUROSCI.16-05-01936.1996 Google Scholar
  38. Murphy, K., Birn, R. M., & Bandettini, P. A. (2013). Resting-state fMRI confounds and cleanup. NeuroImage, 80(4), 349–359.  https://doi.org/10.1016/j.neuroimage.2013.04.001 Google Scholar
  39. Murty, V. P., LaBar, K. S., & Adcock, R. A. (2016). Distinct medial temporal networks encode surprise during motivation by reward versus punishment. Neurobiology of Learning and Memory, 134, 55–64.  https://doi.org/10.1016/j.nlm.2016.01.018 Google Scholar
  40. Murty, V. P., Tompary, A., Adcock, R. A., & Davachi, L. (2017). Selectivity in postencoding connectivity with high-level visual cortex is associated with reward-motivated memory. The Journal of Neuroscience, 37(3), 537–545.  https://doi.org/10.1523/JNEUROSCI.4032-15.2017 Google Scholar
  41. Newton, A., Morgan, V., Rogers, B., & Gore, J. (2011). Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load. Human Brain Mapping, 32(10), 1649–1659.  https://doi.org/10.1002/hbm.21138.Modulation Google Scholar
  42. Nieuwenhuis, I. L. C., & Takashima, A. (2011). The role of the ventromedial prefrontal cortex in memory consolidation. Behavioural Brain Research, 218(2), 325–334.  https://doi.org/10.1016/j.bbr.2010.12.009 Google Scholar
  43. O’Doherty, J. P. (2011). Contributions of the ventromedial prefrontal cortex to goal-directed action selection. Annals of the New York Academy of Sciences, 1239(1), 118–129.  https://doi.org/10.1111/j.1749-6632.2011.06290.x Google Scholar
  44. Patil, A., Murty, V. P., Dunsmoor, J. E., Phelps, E. A., & Davachi, L. (2017). Reward retroactively enhances memory consolidation for related items. Learning and Memory, 24(1), 65–69.  https://doi.org/10.1101/lm.042978.116 Google Scholar
  45. Poole, V. N., Robinson, M. E., Singleton, O., DeGutis, J., Milberg, W. P., McGlinchey, R. E., … Esterman, M. (2016). Intrinsic functional connectivity predicts individual differences in distractibility. Neuropsychologia, 86, 176–182.  https://doi.org/10.1016/j.neuropsychologia.2016.04.023
  46. Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences, 17(5), 230–240.  https://doi.org/10.1016/j.tics.2013.03.005 Google Scholar
  47. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018 Google Scholar
  48. Ranganath, C., Heller, A., Cohen, M. X., Brozinsky, C. J., & Rissman, J. (2005). Functional connectivity with the hippocampus during successful memory formation. Hippocampus, 15(8), 997–1005.  https://doi.org/10.1002/hipo.20141 Google Scholar
  49. Rissman, J., Gazzaley, A., & D’Esposito, M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage, 23(2), 752–763.  https://doi.org/10.1016/j.neuroimage.2004.06.035 Google Scholar
  50. Rogers, R. D., Ramnani, N., Mackay, C., Wilson, J. L., Jezzard, P., Carter, C. S., & Smith, S. M. (2004). Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biological Psychiatry, 55(6), 594–602.  https://doi.org/10.1016/j.biopsych.2003.11.012 Google Scholar
  51. Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332–2342.  https://doi.org/10.1093/cercor/bhi016 Google Scholar
  52. Seymour, B., & McClure, S. M. (2008). Anchors, scales and the relative coding of value in the brain. Current Opinion in Neurobiology, 18(2), 173–178.  https://doi.org/10.1016/j.conb.2008.07.010 Google Scholar
  53. Shigemune, Y., Tsukiura, T., Kambara, T., & Kawashima, R. (2014). Remembering with gains and losses: Effects of monetary reward and punishment on successful encoding activation of source memories. Cerebral Cortex, 24(5), 1319–1331.  https://doi.org/10.1093/cercor/bhs415 Google Scholar
  54. Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–472.  https://doi.org/10.1016/j.tics.2010.08.002 Google Scholar
  55. Silvetti, M., Seurinck, R., & Verguts, T. (2011). Value and prediction error in medial frontal cortex: Integrating the single-unit and systems levels of analysis. Frontiers in Human Neuroscience, 5(August), 1–15.  https://doi.org/10.3389/fnhum.2011.00075 Google Scholar
  56. Squire, L. R. (1992). Probabilistic similarity search for uncertain time series. Psychological Review, 99(2), 195–231.Google Scholar
  57. Strait, C. E., Blanchard, T. C., & Hayden, B. Y. (2014). Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. Neuron, 82(6), 1357–1366.  https://doi.org/10.1016/j.neuron.2014.04.032 Google Scholar
  58. Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280–290.  https://doi.org/10.1016/j.neuron.2010.01.001 Google Scholar
  59. Tambini, A., Rimmele, U., Phelps, E. A., & Davachi, L. (2016). Emotional brain states carry over and enhance future memory formation. Nature Neuroscience, 20(2), 271–278.  https://doi.org/10.1038/nn.4468 Google Scholar
  60. Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307(5715), 1642–1645.  https://doi.org/10.1126/science.1105370 Google Scholar
  61. Tompary, A., Duncan, K., & Davachi, L. (2015). Consolidation of associative and item memory is related to post-encoding functional connectivity between the ventral tegmental area and different medial temporal lobe subregions during an unrelated task. Journal of Neuroscience, 35(19), 7326–7331.  https://doi.org/10.1523/JNEUROSCI.4816-14.2015 Google Scholar
  62. Touroutoglou, A., Andreano, J. M., Barrett, L. F., & Dickerson, B. C. (2015). Brain network connectivity-behavioral relationships exhibit trait-like properties: Evidence from hippocampal connectivity and memory. Hippocampus, 25(12), 1591–1598.  https://doi.org/10.1002/hipo.22480 Google Scholar
  63. Tsukiura, T., & Cabeza, R. (2008). Orbitofrontal and hippocampal contributions to memory for face-name associations: The rewarding power of a smile. Neuropsychologia, 46(9), 2310–2319.  https://doi.org/10.1016/j.neuropsychologia.2008.03.013 Google Scholar
  64. Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.Google Scholar
  65. Urner, M., Schwarzkopf, D. S., Friston, K., & Rees, G. (2013). Early visual learning induces long-lasting connectivity changes during rest in the human brain. NeuroImage, 77, 148–156.  https://doi.org/10.1016/j.neuroimage.2013.03.050 Google Scholar
  66. Van Dijk, K. R. A., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.  https://doi.org/10.1152/jn.00783.2009 Google Scholar
  67. Walton, M. E., Chau, B. K. H., & Kennerley, S. W. (2015). Prioritising the relevant information for learning and decision making within orbital and ventromedial prefrontal cortex. Current Opinion in Behavioral Sciences, 1, 78–85.  https://doi.org/10.1016/j.cobeha.2014.10.005 Google Scholar
  68. Wang, L., Negreira, A., LaViolette, P., Bakkour, A., Sperling, R. A, & Dickerson, B. C. (2010). Intrinsic interhemispheric hippocampal functional connectity predicts indivual differences in memory performance ability. Hippocampus, 20(3), 345–351.  https://doi.org/10.1002/hipo.20771.Intrinsic Google Scholar
  69. Wang, S. H., Tse, D., & Morris, R. G. M. (2012). Anterior cingulate cortex in schema assimilation and expression. Learning and Memory, 19(8), 315–318.  https://doi.org/10.1101/lm.026336.112 Google Scholar
  70. Weible, A. P., Rowland, D. C., Monaghan, C. K., Wolfgang, N. T., & Kentros, C. G. (2012). Neural correlates of long-term object memory in the mouse anterior cingulate cortex. Journal of Neuroscience, 32(16), 5598–5608.  https://doi.org/10.1523/JNEUROSCI.5265-11.2012 Google Scholar
  71. Wimmer, G. E., Daw, N. D., & Shohamy, D. (2012). Generalization of value in reinforcement learning by humans. European Journal of Neuroscience, 35(7), 1092–1104.  https://doi.org/10.1111/j.1460-9568.2012.08017.x Google Scholar
  72. Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–467.  https://doi.org/10.1016/j.neuron.2005.01.010 Google Scholar
  73. Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval. Journal of Cognitive Neuroscience, 24(7), 1532–1547.  https://doi.org/10.1162/jocn_a_00237 Google Scholar
  74. Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2013). Distributed hippocampal patterns that discriminate reward context are associated with enhanced associative binding. Journal of Experimental Psychology, 142(4), 1264–1276.  https://doi.org/10.1037/a0033609 Google Scholar
  75. Yan, C., Su, L., Wang, Y., Xu, T., Yin, D., Fan, M., … Chan, R. C. K. (2016). Multivariate neural representations of value during reward anticipation and consummation in the human orbitofrontal cortex. 6, 29079.  https://doi.org/10.1038/srep29079
  76. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670.  https://doi.org/10.1038/nmeth.1635 Google Scholar
  77. Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168–179.  https://doi.org/10.1016/j.neuron.2012.05.010 Google Scholar
  78. Zeithamova, D., Gelman, B. D., Frank, L., & Preston, A. R. (2018). Abstract representation of prospective reward in the hippocampus. The Journal of Neuroscience, 38(Xx), 0719-18.  https://doi.org/10.1523/JNEUROSCI.0719-18.2018
  79. Zeithamova, D., Manthuruthil, C., & Preston, A. R. (2016). Repetition suppression in the medial temporal lobe and midbrain is altered by event overlap. 1477(August), 1464–1477.  https://doi.org/10.1002/hipo.22622

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Lea E. Frank
    • 1
  • Alison R. Preston
    • 2
  • Dagmar Zeithamova
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of OregonEugeneUSA
  2. 2.Center for Learning and Memory and Department of PsychologyThe University of Texas at AustinAustinUSA

Personalised recommendations