Advertisement

After-effects of self-control: The reward responsivity hypothesis

  • Nicholas J. KelleyEmail author
  • Anna J. Finley
  • Brandon J. Schmeichel
Special Issue/Reward Systems, Cognition,and Emotion
  • 115 Downloads

Abstract

Exercising self-control can be phenomenologically aversive. Insofar as individuals strive to maintain a positive emotional state, one consequence of exercising self-control may thus be a temporarily tuning toward or amplification of reward-related impulses (perhaps arising to countermand the aversive feelings that stem from self-control). Reward-relevant after-effects are relatively underappreciated in self-control research. In the current paper, we review theory and research pertaining to the idea that exercising self-control increases reward responsivity. First, we review theoretical models of self-control focusing on the relationship between control systems and reward systems. Second, we review behavioral studies regarding the effects of exercising self-control on subsequent reactivity to food, money, drugs, and positive emotional images. Third, we review findings from functional neuroimaging and electroencephalographic research pertaining to the reward responsivity hypothesis. We then call for additional research to integrate how, when, and under what circumstances self-control exertion influences reward processing. Such an endeavor will help to advance research and theory on self-control by offering a more precise characterization of the dynamic interactions between control systems and reward systems.

Keywords

Self-control Ego depletion Mental effort Self-regulation Reward Positive affect 

Notes

Acknowledgements

Preparation of this manuscript was supported by National Institute of Health (NIH) grant T32 NS047987 to NJK.

References

  1. Achtziger, A., Alós-Ferrer, C., & Wagner, A. K. (2015). Money, depletion, and prosociality in the dictator game. Journal of Neuroscience, Psychology, and Economics, 8, 1-14.CrossRefGoogle Scholar
  2. Adam, T. C., & Epel, E. S. (2007). Stress, eating and the reward system. Physiology & Behavior, 91, 449-458.CrossRefGoogle Scholar
  3. Addessi, E., Paglieri, F., & Focaroli, V. (2011). The ecological rationality of delay tolerance: Insights from capuchin monkeys. Cognition, 119, 142-147.CrossRefPubMedGoogle Scholar
  4. Amici, F., Aureli, F., & Call, J. (2008). Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology, 18, 1415-1419.CrossRefPubMedGoogle Scholar
  5. Angus, D.J. & Harmon-Jones, E. (2018). The Anger Incentive Delay Task: A Novel Method for Studying Anger in Neuroscience Research. Manuscript submitted for publication.Google Scholar
  6. Angus, D. J., Kemkes, K., Schutter, D. J., & Harmon-Jones, E. (2015). Anger is associated with reward-related electrocortical activity: Evidence from the reward positivity. Psychophysiology, 52, 1271-1280.CrossRefPubMedGoogle Scholar
  7. Aronson, E., & Mills, J. (1959). The effect of severity of initiation on liking for a group. The Journal of Abnormal and Social Psychology, 59, 177-181.CrossRefGoogle Scholar
  8. Balodis, I. M., Kober, H., Worhunsky, P. D., Stevens, M. C., Pearlson, G. D., & Potenza, M. N. (2012). Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biological Psychiatry, 71, 749-757.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baumeister, R. F., Bratslavsky, E., Muraven, M., & Tice, D. M. (1998). Ego depletion: Is the active self a limited resource?. Journal of Personality and Social Psychology, 74, 1252-1265.CrossRefPubMedGoogle Scholar
  10. Baumeister, R. F., Heatherton, T. F., & Tice, D. M. (1994). Losing control: How and why people fail at self-regulation. San Diego: Academic Press.Google Scholar
  11. Baumeister, R. F., Tice, D. M., & Vohs, K. D. (2018). The strength model of self-regulation: Conclusions from the second decade of willpower research. Perspectives on Psychological Science, 13(2), 141-145.CrossRefPubMedGoogle Scholar
  12. Baumeister, R. F., & Vohs, K. D. (2016). Misguided effort with elusive implications. Perspectives on Psychological Science, 11, 574-575.CrossRefPubMedGoogle Scholar
  13. Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of self-control. Current Directions in Psychological Science, 16, 351-355.CrossRefGoogle Scholar
  14. Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. Journal of Neuroscience, 26, 5160-5166.CrossRefPubMedGoogle Scholar
  15. Becker, M. P., Nitsch, A. M., Miltner, W. H., & Straube, T. (2014). A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. Journal of Neuroscience, 34, 3005-3012.CrossRefPubMedGoogle Scholar
  16. Belliveau, J.W., Kennedy, D.N., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R., Cohen, M.S., … Rosen, B.R., 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254 (5032), 716–719.CrossRefPubMedGoogle Scholar
  17. Berkman, E. T. (2017). The neuroscience of self-control. In D. de Ridder, M. Adriaanse, & K. Fujita (Eds.), Handbook of Self-Control in Health.Google Scholar
  18. Berkman, E. T., Hutcherson, C. A., Livingston, J. L., Kahn, L. E., & Inzlicht, M. (2017). Self-control as value-based choice. Current Directions in Psychological Science, 26, 422-428.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Berridge, K. C. (1996). Food reward: brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20, 1-25CrossRefGoogle Scholar
  20. Braams, B. R., van Duijvenvoorde, A. C., Peper, J. S., & Crone, E. A. (2015). Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. Journal of Neuroscience, 35, 7226-7238.CrossRefPubMedGoogle Scholar
  21. Brass, M., & Haggard, P. (2007). To do or not to do: the neural signature of self-control. Journal of Neuroscience, 27, 9141-9145CrossRefPubMedGoogle Scholar
  22. Bray, E. E., MacLean, E. L., & Hare, B. A. (2014). Context specificity of inhibitory control in dogs. Animal Cognition, 17, 15-31.CrossRefPubMedGoogle Scholar
  23. Bruyneel, S. D., Dewitte, S., Franses, P. H., & Dekimpe, M. G. (2009). I felt low and my purse feels light: Depleting mood regulation attempts affect risk decision making. Journal of Behavioral Decision Making, 22, 153-170.CrossRefGoogle Scholar
  24. Carter, E. C., Kofler, L. M., Forster, D. E., & McCullough, M. E. (2015). A series of meta-analytic tests of the depletion effect: self-control does not seem to rely on a limited resource. Journal of Experimental Psychology: General, 144, 796-815.CrossRefGoogle Scholar
  25. Carter, E. C., & McCullough, M. E. (2014). Publication bias and the limited strength model of self-control: has the evidence for ego depletion been overestimated?. Frontiers in Psychology, 5, 823.PubMedPubMedCentralGoogle Scholar
  26. Carver, C. S., & Harmon-Jones, E. (2009). Anger is an approach-related affect: evidence and implications. Psychological Bulletin, 135, 183-204.CrossRefPubMedGoogle Scholar
  27. Carver, C. S., & Scheier, M. F. (1982). Control theory: A useful conceptual framework for personality–social, clinical, and health psychology. Psychological Bulletin, 92, 111-135.CrossRefPubMedGoogle Scholar
  28. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319-333.CrossRefGoogle Scholar
  29. Chester, D. S., & DeWall, C. N. (2014). Prefrontal recruitment during social rejection predicts greater subsequent self-regulatory imbalance and impairment: Neural and longitudinal evidence. NeuroImage, 101, 485-493.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chester, D. S., & DeWall, C. N. (2015). The pleasure of revenge: retaliatory aggression arises from a neural imbalance toward reward. Social cognitive and affective neuroscience, 11, 1173-1182.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Christiansen, P., Cole, J. C., & Field, M. (2012). Ego depletion increases ad-lib alcohol consumption: investigating cognitive mediators and moderators. Experimental and clinical psychopharmacology, 20, 118-128.CrossRefPubMedGoogle Scholar
  32. Clithero, J. A., & Rangel, A. (2014). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive & Affective Neuroscience, 9, 1289–1302.CrossRefGoogle Scholar
  33. Cloutier, J., Heatherton, T. F., Whalen, P. J., & Kelley, W. M. (2008). Are attractive people rewarding? Sex differences in the neural substrates of facial attractiveness. Journal of Cognitive Neuroscience, 20, 941-951.CrossRefPubMedGoogle Scholar
  34. Cohen, M. X. (2011). It's about time. Frontiers in Human Neuroscience, 5, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology, 107, 285-289.CrossRefPubMedGoogle Scholar
  36. Cosme, D., Mobasser, A., Zeithamova, D., Berkman, E. T., & Pfeifer, J. H. (2018). Choosing to regulate: does choice enhance craving regulation?. Social Cognitive and Affective Neuroscience, 13, 300-309.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Crowell, A., Kelley, N. J., & Schmeichel, B. J. (2014). Trait approach motivation moderates the after-effects of self-control. Frontiers in Psychology, 5, 1112.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dambacher, F., Sack, A. T., Lobbestael, J., Arntz, A., Brugman, S., & Schuhmann, T. (2014). The role of right prefrontal and medial cortex in response inhibition: Interfering with action restraint and action cancellation using transcranial magnetic brain stimulation. Journal of Cognitive Neuroscience, 26, 1775-1784.CrossRefPubMedGoogle Scholar
  39. Dang, J., Liu, Y., Liu, X., & Mao, L. (2017). The Ego Could Be Depleted, Providing Initial Exertion Is Depleting. Social Psychology, 48, 242-245.CrossRefGoogle Scholar
  40. DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of the Neurological Sciences, 270, 28-39.CrossRefPubMedGoogle Scholar
  41. Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. Journal of Neuroscience, 32, 5549-5552.CrossRefPubMedGoogle Scholar
  42. Demos, K. E., Kelley, W. M., & Heatherton, T. F. (2011). Dietary restraint violations influence reward responses in nucleus accumbens and amygdala. Journal of Cognitive Neuroscience, 23, 1952-1963.CrossRefPubMedGoogle Scholar
  43. Denson, T. F., DeWall, C. N., & Finkel, E. J. (2012). Self-control and aggression. Current Directions in Psychological Science, 21, 20-25.CrossRefGoogle Scholar
  44. Denson, T. F., von Hippel, W., Kemp, R. I., & Teo, L. S. (2010). Glucose consumption decreases impulsive aggression in response to provocation in aggressive individuals. Journal of Experimental Social Psychology, 46, 1023-1028.CrossRefGoogle Scholar
  45. DeWall, C. N., Baumeister, R. F., Stillman, T. F., & Gailliot, M. T. (2007). Violence restrained: Effects of self-regulation and its depletion on aggression. Journal of Experimental social psychology, 43, 62-76.CrossRefGoogle Scholar
  46. DeWitt Huberts, J. C., Evers, C., & De Ridder, D. T. (2012). License to sin: Self-licensing as a mechanism underlying hedonic consumption. European Journal of Social Psychology, 42, 490-496.CrossRefGoogle Scholar
  47. DeWitt Huberts, J. C., Evers, C., & De Ridder, D. T. (2014). “Because I Am Worth It” A Theoretical Framework and Empirical Review of a Justification-Based Account of Self-Regulation Failure. Personality and Social Psychology Review, 18, 119-138.CrossRefGoogle Scholar
  48. Diekhof, E. K., & Gruber, O. (2010). When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires. Journal of Neuroscience, 30, 1488-1493.CrossRefPubMedGoogle Scholar
  49. Dreisbach, G., & Fischer, R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science, 24, 255-260.CrossRefGoogle Scholar
  50. Druckerman, P. (September 12, 2014). Learning how to exert self-control. The New York Times. Retrieved from: https://www.nytimes.com/2014/09/14/opinion/sunday/learning-self-control.html.
  51. Eisenberger, R. (1992). Learned industriousness. Psychological review, 99, 248-267.CrossRefPubMedGoogle Scholar
  52. Eisenberger, R., Weier, F., Masterson, F. A., & Theis, L. Y. (1989). Fixed-ratio schedules increase generalized self-control: Preference for large rewards despite high effort or punishment. Journal of Experimental Psychology: Animal Behavior Processes, 15, 383-392.Google Scholar
  53. Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., & Weber, E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nature Neuroscience, 13, 538-539CrossRefPubMedGoogle Scholar
  54. Finke, C., Schlichting, J., Papazoglou, S., Scheel, M., Freing, A., Soemmer, C., … Ploner, C. J. (2015). Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue. Multiple Sclerosis Journal, 21, 925-934.CrossRefPubMedGoogle Scholar
  55. Finley, A. J., & Schmeichel, B. J. (2018). Aftereffects of self-control on positive emotional reactivity. Personality and Social Psychology Bulletin.Google Scholar
  56. Fischer, P., Greitemeyer, T., & Frey, D. (2007). Ego depletion and positive illusions: Does the construction of positivity require regulatory resources?. Personality and Social Psychology Bulletin, 33(9), 1306-1321.CrossRefPubMedGoogle Scholar
  57. Fischer, P., Greitemeyer, T., & Frey, D. (2008). Self-regulation and selective exposure: the impact of depleted self-regulation resources on confirmatory information processing. Journal of Personality and Social Psychology, 94, 382-395.CrossRefPubMedGoogle Scholar
  58. Fischer, P., Kastenmüller, A., & Asal, K. (2012). Ego depletion increases risk-taking. The Journal of Social Psychology, 152(5), 623-638.CrossRefPubMedGoogle Scholar
  59. Freeman, N., & Muraven, M. (2010). Self-control depletion leads to increased risk taking. Social Psychological and Personality Science, 1, 175-181.CrossRefGoogle Scholar
  60. Friese, M., Hofmann, W., & Wänke, M. (2008). When impulses take over: Moderated predictive validity of explicit and implicit attitude measures in predicting food choice and consumption behaviour. British Journal of Social Psychology, 47, 397-419.CrossRefPubMedGoogle Scholar
  61. Friese, M., Loschelder, D. D., Gieseler, K., Frankenbach, J., & Inzlicht, M. (2018). Is ego depletion real? An analysis of arguments. Personality and Social Psychology Review, 1088868318762183.Google Scholar
  62. Furnham, A. (1984). The Protestant work ethic: A review of the psychological literature. European Journal of Social Psychology, 14, 87-104.CrossRefGoogle Scholar
  63. Furnham, A., Bond, M., Heaven, P., Hilton, D., Lobel, T., Masters, J., … Van Daalen, H. (1993). A comparison of Protestant work ethic beliefs in thirteen nations. The Journal of Social Psychology, 133, 185-197.CrossRefGoogle Scholar
  64. Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., … Schmeichel, B. J. (2007). Self-control relies on glucose as a limited energy source: willpower is more than a metaphor. Journal of Personality and Social Psychology, 92, 325-336.CrossRefPubMedGoogle Scholar
  65. Galvan, A., Hare, T., Voss, H., Glover, G., & Casey, B. J. (2007). Risk-taking and the adolescent brain: who is at risk?. Developmental Science, 10, 8-14.CrossRefGoogle Scholar
  66. Garrison, K., Finley, A. J., & Schmeichel, B. (2018). Ego depletion reduces attention control: Evidence from two high-powered preregistered experiments. Personality and Social Psychology Bulletin.Google Scholar
  67. Garrison, K. E., Crowell, A. L., Finley, A. J., & Schmeichel, B. J. (2017). Effects of prior mental effort on picture processing: An ERP investigation. Psychophysiology, 54, 1714-1725.CrossRefPubMedGoogle Scholar
  68. Giuliani, N. R., Mann, T., Tomiyama, A. J., & Berkman, E. T. (2014). Neural systems underlying the reappraisal of personally craved foods. Journal of Cognitive Neuroscience, 26, 1390-1402.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Glazer, J. E., Kelley, N. J., Pornpattananangkul, N., Mittal, V. A., & Nusslock, R. (2018). Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology.Google Scholar
  70. Gohm, C. L., & Clore, G. L. (2000). Individual differences in emotional experience: Mapping available scales to processes. Personality and Social Psychology Bulletin, 26, 679-697.CrossRefGoogle Scholar
  71. Gujar, N., Yoo, S. S., Hu, P., & Walker, M. P. (2011). Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. Journal of Neuroscience, 31, 4466-4474.CrossRefPubMedGoogle Scholar
  72. Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4-26.CrossRefPubMedGoogle Scholar
  73. Hagger, M. S., Chatzisarantis, N. L., Alberts, H., Anggono, C. O., Batailler, C., Birt, A. R., … Calvillo, D. P. (2016). A multilab preregistered replication of the ego-depletion effect. Perspectives on Psychological Science, 11, 546-573.CrossRefPubMedGoogle Scholar
  74. Hagger, M. S., Panetta, G., Leung, C. M., Wong, G. G., Wang, J. C., Chan, D. K., … Chatzisarantis, N. L. (2013). Chronic inhibition, self-control and eating behavior: test of a ‘resource depletion’model. PloS One, 8, e76888.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological bulletin, 136, 495-525.CrossRefPubMedGoogle Scholar
  76. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413-497.CrossRefGoogle Scholar
  77. Harmon-Jones, E., & Gable, P. A. (2018). On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence. Psychophysiology, 55, e12879.CrossRefGoogle Scholar
  78. Harmon-Jones, E., & Mills, J. (Eds.). (1999). Cognitive dissonance: Progress on a pivotal theory in social psychology. Washington, DC: American Psychological Association.Google Scholar
  79. Haynes, A., Kemps, E., & Moffitt, R. (2016). Too depleted to try? Testing the process model of ego depletion in the context of unhealthy snack consumption. Applied Psychology: Health and Well-Being, 8, 386-404.PubMedGoogle Scholar
  80. Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences, 15, 132-139.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hofmann, W., Baumeister, R. F., Förster, G., & Vohs, K. D. (2012a). Everyday temptations: an experience sampling study of desire, conflict, and self-control. Journal of Personality and Social Psychology, 102, 1318-1335.CrossRefPubMedGoogle Scholar
  82. Hofmann, W., Rauch, W., & Gawronski, B. (2007). And deplete us not into temptation: Automatic attitudes, dietary restraint, and self-regulatory resources as determinants of eating behavior. Journal of Experimental Social Psychology, 43, 497-504.CrossRefGoogle Scholar
  83. Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012b). Executive functions and self-regulation. Trends in Cognitive Sciences, 16, 174-180.CrossRefPubMedGoogle Scholar
  84. Hughes, D. M., Yates, M. J., Morton, E. E., & Smillie, L. D. (2014). Asymmetric frontal cortical activity predicts effort expenditure for reward. Social Cognitive and Affective Neuroscience, 10, 1015-1019.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hutcherson, C. A., Bushong, B., & Rangel, A. (2015). A neurocomputational model of altruistic choice and its implications. Neuron, 87, 451–462.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Imhoff, R., Schmidt, A. F., & Gerstenberg, F. (2014). Exploring the interplay of trait self-control and ego depletion: Empirical evidence for ironic effects. European Journal of Personality, 28, 413-424.CrossRefGoogle Scholar
  87. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015a). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19, 126-132.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Inzlicht, M., Gervais, W., & Berkman, E. (2015b). Bias-Correction Techniques Alone Cannot Determine Whether Ego Depletion is Different from Zero: Commentary on Carter, Kofler, Forster, & McCullough, 2015. Available at SSRN: http://ssrn.com/abstract=2659409 or  https://doi.org/10.2139/ssrn.2659409
  89. Inzlicht, M., & Gutsell, J. N. (2007). Running on empty: Neural signals for self-control failure. Psychological Science, 18, 933-937.CrossRefPubMedGoogle Scholar
  90. Inzlicht, M., & Schmeichel, B. J. (2012). What is ego depletion? Toward a mechanistic revision of the resource model of self-control. Perspectives on Psychological Science, 7, 450-463.CrossRefPubMedGoogle Scholar
  91. Inzlicht, M., Schmeichel, B. J., & Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18, 127-133.CrossRefPubMedGoogle Scholar
  92. Inzlicht, M., Shenhav, A., & Olivola, C. (2017). The effort paradox: Effort is both costly and valued. Trends in Cognitive Sciences.Google Scholar
  93. Jimura, K., Chushak, M. S., & Braver, T. S. (2013). Impulsivity and self-control during intertemporal decision making linked to the neural dynamics of reward value representation. Journal of Neuroscience, 33, 344-357.CrossRefPubMedGoogle Scholar
  94. Jimura, K., Chushak, M. S., Westbrook, A., & Braver, T. S. (2018). Intertemporal decision-making involves prefrontal control mechanisms associated with working memory. Cerebral Cortex, 28, 1105-1116.CrossRefPubMedGoogle Scholar
  95. Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10, 1625–1633.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kelley, A. E., & Berridge, K. C. (2002). The neuroscience of natural rewards: relevance to addictive drugs. Journal of Neuroscience, 22, 3306-3311.CrossRefPubMedGoogle Scholar
  97. Kelley, N. J., Glazer, J. E., Pornpattananangkul, N., & Nusslock, R. (2019). Reappraisal and suppression emotion-regulation tendencies differentially predict reward-responsivity and psychological well-being. Biological Psychology, 140, 35-47.CrossRefPubMedGoogle Scholar
  98. Kelley, N. J., Hortensius, R., Schutter, D. J., & Harmon-Jones, E. (2017). The relationship of approach/avoidance motivation and asymmetric frontal cortical activity: a review of studies manipulating frontal asymmetry. International Journal of Psychophysiology, 119, 19-30.CrossRefPubMedGoogle Scholar
  99. Kelley, W. M., Wagner, D. D., & Heatherton, T. F. (2015). In search of a human self-regulation system. Annual Review of Neuroscience, 38, 389-411.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kogan, N., & Wallach, M. A. (1964). Risk taking: A study in cognition and personality. Oxford: Holt, Rinehart & Winston.Google Scholar
  101. Kotabe, H. P., & Hofmann, W. (2015). On integrating the components of self-control. Perspectives on Psychological Science, 10, 618-638.CrossRefPubMedGoogle Scholar
  102. Kurzban, R. (2016). The sense of effort. Current Opinion in Psychology, 7, 67-70.CrossRefGoogle Scholar
  103. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36, 661-679.CrossRefPubMedGoogle Scholar
  104. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., … Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89, 5675-5679.CrossRefGoogle Scholar
  105. Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., … Brown, R. A. (2002). Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART). Journal of Experimental Psychology: Applied, 8, 75.PubMedGoogle Scholar
  106. Leknes, S., Brooks, J. C., Wiech, K., & Tracey, I. (2008). Pain relief as an opponent process: a psychophysical investigation. European Journal of Neuroscience, 28, 794-801.CrossRefPubMedGoogle Scholar
  107. Lopez, R. B., Chen, P. H. A., Huckins, J. F., Hofmann, W., Kelley, W. M., & Heatherton, T. F. (2017). A balance of activity in brain control and reward systems predicts self-regulatory outcomes. Social Cognitive and Affective Neuroscience, 12, 832-838.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lopez, R. B., Hofmann, W., Wagner, D. D., Kelley, W. M., & Heatherton, T. F. (2014). Neural predictors of giving in to temptation in daily life. Psychological Science, 25, 1337-1344.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Lopez, R. B., Milyavskaya, M., Hofmann, W., & Heatherton, T. F. (2016). Motivational and neural correlates of self-control of eating: a combined neuroimaging and experience sampling study in dieting female college students. Appetite, 103, 192-199.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Luck, S.J. (2014). An introduction to the event-related potential technique (2nd). Cambridge: The MIT Press.Google Scholar
  111. Luethi, M. S., Friese, M., Binder, J., Boesiger, P., Luechinger, R., & Rasch, B. (2016). Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion. Social Cognitive and Affective Neuroscience, 11, 1618-1626.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Ma, Q., Meng, L., Wang, L., & Shen, Q. (2014). I endeavor to make it: Fffort increases valuation of subsequent monetary reward. Behavioural Brain Research, 261, 1-7.CrossRefPubMedGoogle Scholar
  113. MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., … Boogert, N. J. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences, 111, E2140-E2148.CrossRefGoogle Scholar
  114. McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27, 5796-5804.CrossRefPubMedGoogle Scholar
  115. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503-507.CrossRefGoogle Scholar
  116. Meyer, H. C., & Bucci, D. J. (2016). Imbalanced activity in the orbitofrontal cortex and nucleus accumbens impairs behavioral inhibition. Current Biology, 26, 2834-2839.CrossRefPubMedGoogle Scholar
  117. Miller, H. C., Pattison, K. F., DeWall, C. N., Rayburn-Reeves, R., & Zentall, T. R. (2010). Self-control without a “self”?: Common self-control processes in humans and dogs. Psychological Science, 21, 534-538.CrossRefPubMedGoogle Scholar
  118. Milyavskaya, M., Inzlicht, M., Johnson, T., & Larson, M. (2017). Reward sensitivity following boredom and cognitive effort: A high-powered neurophysiological investigation. bioRxiv, 177220.Google Scholar
  119. Mischel, W. (1958). Preference for delayed reinforcement: An experimental study of a cultural observation. Journal of Abnormal and Social Psychology, 56, 57-61.CrossRefGoogle Scholar
  120. Mischel, W., Ebbesen, E. B., & Zeiss, A. R. (1972). Cognitive and attentional mechanisms in delay of gratification. Journal of personality and Social Psychology, 21, 204-218.CrossRefPubMedGoogle Scholar
  121. Moreno, S. G., Sutton, A. J., Ades, A. E., Stanley, T. D., Abrams, K. R., Peters, J. L., & Cooper, N. J. (2009). Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. BMC Medical Research Methodology, 9, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Munakata, Y., Snyder, H. R., & Chatham, C. H. (2012). Developing Cognitive Control Three Key Transitions. Current Directions in Psychological Science, 21, 71-77.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle?. Psychological Bulletin, 126, 247-259.CrossRefPubMedGoogle Scholar
  124. Muraven, M., Collins, R. L., & Neinhaus, K. (2002). Self-control and alcohol restraint: An initial application of the Self-Control Strength Model. Psychology of Addictive Behaviors, 16, 113-120.CrossRefPubMedGoogle Scholar
  125. Muraven, M., Shmueli, D., & Burkley, E. (2006). Conserving self-control strength. Journal of Personality and Social Psychology, 91, 524-537.CrossRefPubMedGoogle Scholar
  126. Noble, E. (1996). Alcoholism and the dopaminergic system: a review. Addiction biology, 1, 333-348.CrossRefPubMedGoogle Scholar
  127. Osgood, J. M., & Muraven, M. (2015). Self-control depletion does not diminish attitudes about being prosocial but does diminish prosocial behaviors. Basic and Applied Social Psychology, 37, 68-80.CrossRefGoogle Scholar
  128. Paulus, F. M., Rademacher, L., Schäfer, T. A. J., Müller-Pinzler, L., & Krach, S. (2015). Journal impact factor shapes scientists’ reward signal in the prospect of publication. PloS one, 10, e0142537.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Petit, O., Merunka, D., Anton, J. L., Nazarian, B., Spence, C., Cheok, A. D., … Oullier, O. (2016). Health and pleasure in consumers' dietary food choices: Individual differences in the brain's value system. PloS one, 11, e0156333.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Pfeifer, J. H., & Berkman, E. T. (2018). The Development of Self and Identity in Adolescence: Neural Evidence and Implications for a Value-Based Choice Perspective on Motivated Behavior. Child Development Perspectives.Google Scholar
  131. Pfurtscheller, G., Stancak Jr, A., & Neuper, C. (1996). Post-movement beta synchronization. A correlate of an idling motor area?. Electroencephalography and Clinical Neurophysiology, 98, 281-293.CrossRefPubMedGoogle Scholar
  132. Pornpattananangkul, N., & Nusslock, R. (2015). Motivated to win: Relationship between anticipatory and outcome reward-related neural activity. Brain and Cognition, 100, 21-40.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Prinsen, S., Evers, C., Wijngaards, L., van Vliet, R., & de Ridder, D. (2018). Does Self-Licensing Benefit Self-Regulation Over Time? An Ecological Momentary Assessment Study of Food Temptations. Personality and Social Psychology Bulletin, 0146167218754509.Google Scholar
  134. Rapuano, K. M., Huckins, J. F., Sargent, J. D., Heatherton, T. F., & Kelley, W. M. (2015). Individual differences in reward and somatosensory-motor brain regions correlate with adiposity in adolescents. Cerebral Cortex, 26, 2602-2611.CrossRefPubMedGoogle Scholar
  135. Reed, W. R. (2015). A Monte Carlo analysis of alternative meta-analysis estimators in the presence of publication bias. Economics: The Open-Access, Open-Assessment E-Journal, 9 (2015-30): 1-40.Google Scholar
  136. Rosenthal, R. W. (1981). Games of perfect information, predatory pricing and the chain store paradox. Journal of Economic Theory, 25, 92 – 100.CrossRefGoogle Scholar
  137. Rothermund, K., Voss, A., & Wentura, D. (2008). Counter-regulation in affective attentional biases: a basic mechanism that warrants flexibility in emotion and motivation. Emotion, 8, 34-46.CrossRefPubMedGoogle Scholar
  138. Russell, B. (2004). History of western philosophy. London: Routledge.Google Scholar
  139. Sanes, J. N., & Donoghue, J. P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proceedings of the National Academy of Sciences, 90, 4470-4474.CrossRefGoogle Scholar
  140. Saunders, B., Lin, H., Milyavskaya, M., & Inzlicht, M. (2017). The emotive nature of conflict monitoring in the medial prefrontal cortex. International Journal of Psychophysiology, 119, 31-40.CrossRefPubMedGoogle Scholar
  141. Schlauch, R. C., Christensen, R. L., Derrick, J. L., Crane, C. A., & Collins, R. L. (2015). Individual Differences in Approach and Avoidance Inclinations Moderate the Effect of Self-Control Depletion on Ad-Lib Drinking. Alcoholism: Clinical and Experimental Research, 39, 2480-2488.CrossRefGoogle Scholar
  142. Schmeichel, B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology: General, 136, 241-255.CrossRefGoogle Scholar
  143. Schmeichel, B. J., Crowell, A., & Harmon-Jones, E. (2015). Exercising self-control increases relative left frontal cortical activation. Social Cognitive and Affective Neuroscience, 11, 282-288.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Schmeichel, B. J., Harmon-Jones, C., & Harmon-Jones, E. (2010). Exercising self-control increases approach motivation. Journal of Personality and Social Psychology, 99, 162-173.CrossRefPubMedGoogle Scholar
  145. Schmeichel, B. J., & Vohs, K. (2009). Self-affirmation and self-control: affirming core values counteracts ego depletion. Journal of Personality and Social Psychology, 96(4), 770-782.CrossRefPubMedGoogle Scholar
  146. Schmidt, B., Mussel, P., Osinsky, R., Rasch, B., Debener, S., & Hewig, J. (2017). Work first then play: Prior task difficulty increases motivation-related brain responses in a risk game. Biological Psychology, 126, 82-88.CrossRefPubMedGoogle Scholar
  147. Searle, J. (2001). Rationality in action. Cambridge: MIT Press.Google Scholar
  148. Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37, 681-696.CrossRefGoogle Scholar
  149. Shamosh, N. A., DeYoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R., … Gray, J. R. (2008). Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19, 904-911.CrossRefPubMedGoogle Scholar
  150. Shamosh, N. A., & Gray, J. R. (2008). Delay discounting and intelligence: A meta-analysis. Intelligence, 36, 289-305.CrossRefGoogle Scholar
  151. Shmueli, D., & Prochaska, J. J. (2009). Resisting tempting foods and smoking behavior: Implications from a self-control theory perspective. Health Psychology, 28, 300-306.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Simonsohn, U. (2017). PET-PEESE is not like homeopathy [Web log comment]. Retrieved from http://datacolada.org/59.
  153. Smith, D. G., & Robbins, T. W. (2013). The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model. Biological Psychiatry, 73, 804-810.CrossRefPubMedGoogle Scholar
  154. Solomon, R. L. (1980). The opponent-process theory of acquired motivation: the costs of pleasure and the benefits of pain. American Psychologist, 35, 691-712.CrossRefPubMedGoogle Scholar
  155. Solomon, R. L., & Corbit, J. D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119-145.CrossRefPubMedGoogle Scholar
  156. Steinberg, L. (2010). A dual systems model of adolescent risk-taking. Developmental Psychobiology, 52, 216-224.PubMedGoogle Scholar
  157. Strait, C. E., Blanchard, T. C., & Hayden, B. Y. (2014). Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. Neuron, 82, 1357–1366.CrossRefPubMedPubMedCentralGoogle Scholar
  158. Stucke, T. S., & Baumeister, R. F. (2006). Ego depletion and aggressive behavior: Is the inhibition of aggression a limited resource?. European Journal of Social Psychology, 36, 1-13.CrossRefGoogle Scholar
  159. Tabibnia, G., Monterosso, J. R., Baicy, K., Aron, A. R., Poldrack, R. A., Chakrapani, S., … London, E. D. (2011). Different forms of self-control share a neurocognitive substrate. Journal of Neuroscience, 31, 4805-4810.CrossRefPubMedGoogle Scholar
  160. Threadgill, A. H., & Gable, P. A. (2018a). Resting beta activation and trait motivation: Neurophysiological markers of motivated motor-action preparation. International Journal of Psychophysiology, 127, 46-51.CrossRefPubMedGoogle Scholar
  161. Threadgill, A. H., & Gable, P. A. (2018b). Anger Enhances the RewP to Approach-Motivated Revenge and Aggravation. Manuscript submitted for publication.Google Scholar
  162. Tough, P. (2009). Can the Right Kinds of Play Teach Self-Control? The New York Times. Retrieved from: https://www.nytimes.com/2009/09/27/magazine/27tools-t.html.
  163. Underwood, B. J. (1975). Individual differences as a crucible in theory construction. American Psychologist, 30, 128-134.CrossRefGoogle Scholar
  164. Vaughn, B. E., Kopp, C. B., & Krakow, J. B. (1984). The emergence and consolidation of self-control from eighteen to thirty months of age: Normative trends and individual differences. Child Development, 55, 990-1004.CrossRefPubMedGoogle Scholar
  165. Vijayakumar, N., Whittle, S., Yücel, M., Dennison, M., Simmons, J., & Allen, N. B. (2014). Prefrontal structural correlates of cognitive control during adolescent development: a 4-year longitudinal study. Journal of Cognitive neuroscience, 26, 1118-1130.CrossRefPubMedGoogle Scholar
  166. Vohs, K., Baumeister, R., Mead, N., Ramanathan, S., & Schmeichel, B. (2011). Engaging in Self-Control Intensifies Desires and Feelings. ACR North American Advances.Google Scholar
  167. Vohs, K. D., & Baumeister, R. F. (2016). Handbook of self-regulation: Research, theory, and applications (3rd). New York: Guilford Publications.Google Scholar
  168. Vohs, K. D., Baumeister, R. F., Schmeichel, B. J., Twenge, J. M., Nelson, N. M., & Tice, D. M. (2008). Making Choices Impairs Subsequent Self-Control: A Limited-Resource Account of Decision Making, Self-Regulation, and Active Initiative. Journal of Personality and Social Psychology, 94, 883-898.CrossRefPubMedGoogle Scholar
  169. Vohs, K. D., & Heatherton, T. F. (2000). Self-regulatory failure: A resource-depletion approach. Psychological science, 11, 249-254.CrossRefPubMedGoogle Scholar
  170. Wagner, D. D., Altman, M., Boswell, R. G., Kelley, W. M., & Heatherton, T. F. (2013). Self-regulatory depletion enhances neural responses to rewards and impairs top-down control. Psychological Science, 24, 2262-2271.CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wagner, D. D., & Heatherton, T. F. (2012). Self-regulatory depletion increases emotional reactivity in the amygdala. Social Cognitive and Affective Neuroscience, 8, 410-417.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Wagner, D. D., & Heatherton, T. F. (2017). The Cognitive Neuroscience of Self-Regulatory Failure. Handbook of Self-Regulation: Research, Theory, and Applications, 111.Google Scholar
  173. Wang, Y., Yang, L. , & Wang, Y. (2014). Suppression (but Not Reappraisal) Impairs subsequent error detection: An ERP study of emotion regulation's resource-depleting effect. PloS One, 9, e96339.CrossRefPubMedPubMedCentralGoogle Scholar
  174. Weber, M. (1958). The Protestant ethic and the spirit of capitalism. New York: Scribner.Google Scholar
  175. Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PloS One, 8, e68210.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Wiesner, C. D., & Lindner, C. (2017). Weakening self-control biases the emotional evaluation of appetitive cues. PloS One, 12(1), e0170245.CrossRefPubMedPubMedCentralGoogle Scholar
  177. Wilson, S. J., Sayette, M. A., & Fiez, J. A. (2013). Neural correlates of self-focused and other-focused strategies for coping with cigarette cue exposure. Psychology of Addictive Behaviors, 27, 466-476.CrossRefPubMedGoogle Scholar
  178. Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5, 483-494.CrossRefPubMedGoogle Scholar
  179. Young, C. B., & Nusslock, R. (2016). Positive mood enhances reward-related neural activity. Social Cognitive and Affective Neuroscience, 11, 934-944CrossRefPubMedPubMedCentralGoogle Scholar
  180. Zentall, T. R. (2010). Justification of effort by humans and pigeons: cognitive dissonance or contrast?. Current Directions in Psychological Science, 19, 296-300.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc 2019

Authors and Affiliations

  • Nicholas J. Kelley
    • 1
    Email author
  • Anna J. Finley
    • 2
  • Brandon J. Schmeichel
    • 2
  1. 1.Department of PsychologyNorthwestern UniversityEvanstonUSA
  2. 2.Department of PsychologyTexas A&M UniversityCollege StationUSA

Personalised recommendations