Advertisement

Abnormal approach-related motivation but spared reinforcement learning in MDD: Evidence from fronto-midline Theta oscillations and frontal Alpha asymmetry

  • Davide GhezaEmail author
  • Jasmina Bakic
  • Chris Baeken
  • Rudi De Raedt
  • Gilles Pourtois
Special Issue/Reward Systems, Cognition,and Emotion
  • 69 Downloads

Abstract

Major depression is characterized by abnormal reward processing and reinforcement learning (RL). This impairment might stem from deficient motivation processes, in addition to reduced reward sensitivity. In this study, we recorded 64-channel EEG in a large cohort of major depressive disorder (MDD) patients and matched healthy controls (HC) while they performed a standard RL task. Participants were asked to discover, by trial and error, several hidden stimulus-response associations having different reward probabilities, as enforced using evaluative feedback. We extracted induced fronto-midline Theta (FMT) power time-locked to the response and feedback as neurophysiological index of RL. Furthermore, we assessed approach-related motivation by measuring frontal alpha asymmetry concurrently. At the behavioral level, MDD patients and HCs showed comparable RL. At the EEG level, FMT power systematically varied as a function of reward probability, with opposing effects found at the response and feedback levels. Although this global pattern was spared in MDD, at the feedback level these patients showed however a steep FMT power decrease across trials when reward probability was low. Moreover, they showed impaired approach-related motivation during task execution, as reflected by frontal Alpha asymmetry. These results suggest a dissociation between (globally spared) RL and (impaired) approach motivation in MDD.

Keywords

Anhedonia Reinforcement learning Fronto-midline Theta Medial frontal cortex Reward prediction error 

Notes

Acknowledgments

The authors thank Ivan Grahek for the guidance in performing and reporting the BMLM statistical analysis and Ladislas Nalborczyk for further support with its implementation.

Funding

RDR, CB, and GP are funded by a Concerted Research Action Grant from Ghent University. GP is supported by a 2015 NARSAD Independent Investigator Grant from the Brain & Behavior Research Foundation and by the Research Foundation Flanders (FWO, grant number 3G024716).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

13415_2019_693_MOESM1_ESM.pdf (964 kb)
ESM 1 (PDF 963 kb)

References

  1. Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional reward processing in depression. Current Opinion in Psychology, 4, 114–118.  https://doi.org/10.1016/j.copsyc.2014.12.011 Google Scholar
  2. Allen, J. J. B., & Reznik, S. J. (2015). Frontal EEG asymmetry as a promising marker of depression vulnerability: Summary and methodological considerations. Current Opinion in Psychology, 4, 93–97.  https://doi.org/10.1016/j.copsyc.2014.12.017 Google Scholar
  3. Allen, J. J. B., Urry, H. L., Hitt, S. K., & Coan, J. A. (2004). The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology, 41(2), 269–280.  https://doi.org/10.1111/j.1469-8986.2003.00149.x Google Scholar
  4. Bakic, J., Jepma, M., De Raedt, R., & Pourtois, G. (2014). Effects of positive mood on probabilistic learning: Behavioral and electrophysiological correlates. Biological Psychology, 103, 223–232.  https://doi.org/10.1016/j.biopsycho.2014.09.012 Google Scholar
  5. Bakic, J., Pourtois, G., Jepma, M., Duprat, R., De Raedt, R., & Baeken, C. (2017). Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning. Depression and Anxiety, 34(1), 89–96.  https://doi.org/10.1002/da.22576 Google Scholar
  6. Barch, D. M., Carter, C. S., Gold, J. M., Johnson, S. L., Kring, A. M., MacDonald, A. W., … Strauss, M. E. (2017). Explicit and implicit reinforcement learning across the psychosis spectrum. Journal of Abnormal Psychology, 126(5), 694–711.  https://doi.org/10.1037/abn0000259
  7. Beck, A., Steer, R., & Brown, G. (1996). Beck Depression Inventory-II (BDI-II). Beck Depression Inventory-II. Retrieved from http://www.pearsonclinical.com/psychology/products/100000159/beck-depression-inventoryii-bdi-ii.html?Pid=015-8018-370
  8. Bernat, E. M., Nelson, L. D., & Baskin-Sommers, A. R. (2015). Time-frequency theta and delta measures index separable components of feedback processing in a gambling task. Psychophysiology, 52(5), 626–637.  https://doi.org/10.1111/psyp.12390 Google Scholar
  9. Bernat, E. M., Nelson, L. D., Steele, V. R., Gehring, W. J., & Patrick, C. J. (2011). Externalizing psychopathology and gain/loss feedback in a simulated gambling task: Dissociable components of brain response revealed by time-frequency analysis. Journal of Abnormal Psychology, 120(2), 352–364.  https://doi.org/10.1037/a0022124 Google Scholar
  10. Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507–513.  https://doi.org/10.1016/S0166-2236(03)00233-9 Google Scholar
  11. Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “liking”, “wanting”, and learning. Current Opinion in Pharmacology, 9(1), 65–73.  https://doi.org/10.1016/j.coph.2008.12.014 Google Scholar
  12. Bress, J. N., Smith, E. E., Foti, D., Klein, D. N., & Hajcak, G. (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89(1), 156–162.  https://doi.org/10.1016/j.biopsycho.2011.10.004 Google Scholar
  13. Bürkner, P.-C. (2017). brms : An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1–28.  https://doi.org/10.18637/jss.v080.i01 Google Scholar
  14. Caplin, A., & Dean, M. (2008). Axiomatic methods, dopamine and reward prediction error. Current Opinion in Neurobiology, 18(2), 197–202.  https://doi.org/10.1016/j.conb.2008.07.007 Google Scholar
  15. Cavanagh, J. F., Bismark, A. J., Frank, M. J., & Allen, J. J. B. (2011). Larger error signals in major depression are associated with better avoidance learning. Frontiers in Psychology, 2(NOV), 1–6.  https://doi.org/10.3389/fpsyg.2011.00331 Google Scholar
  16. Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29(1), 98–105.  https://doi.org/10.1523/JNEUROSCI.4137-08.2009 Google Scholar
  17. Cavanagh, J. F., Figueroa, C. M., Cohen, M. X., & Frank, M. J. (2012). Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cerebral Cortex, 22(11), 2575–2586.  https://doi.org/10.1093/cercor/bhr332 Google Scholar
  18. Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Psychophysiology, 18(8), 414–421.  https://doi.org/10.1016/j.tics.2014.04.012 Google Scholar
  19. Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198–3209.  https://doi.org/10.1016/j.neuroimage.2009.11.080 Google Scholar
  20. Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238.  https://doi.org/10.1111/j.1469-8986.2011.01293.x Google Scholar
  21. Coan, J. A., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1–2), 7–49.  https://doi.org/10.1016/j.biopsycho.2004.03.002 Google Scholar
  22. Coan, J. A., Allen, J. J. B., & McKnight, P. E. (2006). A capability model of individual differences in frontal EEG asymmetry. Biological Psychology, 72(2), 198–207.  https://doi.org/10.1016/j.biopsycho.2005.10.003 Google Scholar
  23. Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT Press, Cambrigde.Google Scholar
  24. Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–2763.  https://doi.org/10.1152/jn.00479.2013 Google Scholar
  25. Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127–142.  https://doi.org/10.1016/j.brainres.2008.07.114 Google Scholar
  26. Cohen, M. X., Wilmes, K., & van de Vijver, I. (2011). Cortical electrophysiological network dynamics of feedback learning. Trends in Cognitive Sciences, 15(12), 558–566.  https://doi.org/10.1016/j.tics.2011.10.004 Google Scholar
  27. Collins, A. G. E., Albrecht, M. A., Waltz, J. A., Gold, J. M., & Frank, M. J. (2017). Interactions among working memory, reinforcement learning, and effort in value-based choice: A new paradigm and selective deficits in schizophrenia. Biological Psychiatry, 82(6), 431–439.  https://doi.org/10.1016/j.biopsych.2017.05.017 Google Scholar
  28. Davidson, R. J. (1993). Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cognition and Emotion, 7(1), 115–138.  https://doi.org/10.1080/02699939308409180 Google Scholar
  29. Davidson, R. J. (1998a). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition and Emotion, 12(3), 307–330.  https://doi.org/10.1080/026999398379628 Google Scholar
  30. Davidson, R. J. (1998b). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35(5), S0048577298000134.  https://doi.org/10.1017/S0048577298000134 Google Scholar
  31. Davidson, R. J. (2004). What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1–2), 219–233.  https://doi.org/10.1016/j.biopsycho.2004.03.008 Google Scholar
  32. Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology: I. Journal of Personality and Social Psychology, 58(2), 330–341.  https://doi.org/10.1037/0022-3514.58.2.330 Google Scholar
  33. Dayan, P., & Berridge, K. C. (2014). Model-based and model-free Pavlovian reward learning: Revaluation, revision, and revelation. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 473–492.  https://doi.org/10.3758/s13415-014-0277-8 Google Scholar
  34. De Raedt, R., Vanderhasselt, M. A., & Baeken, C. (2015). Neurostimulation as an intervention for treatment resistant depression: From research on mechanisms towards targeted neurocognitive strategies. Clinical Psychology Review  https://doi.org/10.1016/j.cpr.2014.10.006
  35. Debener, S., Beauducel, A., Nessler, D., Brocke, B., Heilemann, H., & Kayser, J. (2000). Is resting anterior EEG alpha asymmetry a trait marker for depression? Neuropsychobiology, 41(1), 31–37.  https://doi.org/10.1159/000026630 Google Scholar
  36. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.  https://doi.org/10.1016/j.jneumeth.2003.10.009 Google Scholar
  37. Donner, T. H., & Siegel, M. (2011). A framework for local cortical oscillation patterns. Trends in Cognitive Sciences  https://doi.org/10.1016/j.tics.2011.03.007
  38. Duprat, R., Desmyter, S., Rudi, D. R., Van Heeringen, K., Van Den Abbeele, D., Tandt, H., … Baeken, C. (2016). Accelerated intermittent theta burst stimulation treatment in medication-resistant major depression: A fast road to remission? Journal of Affective Disorders, 200(June), 6–14.  https://doi.org/10.1016/j.jad.2016.04.015
  39. Endrass, T., & Ullsperger, M. (2014). Specificity of performance monitoring changes in obsessive-compulsive disorder. Neuroscience and Biobehavioral Reviews, 46(P1), 124–138.  https://doi.org/10.1016/j.neubiorev.2014.03.024 Google Scholar
  40. Eppinger, B., Kray, J., Mock, B., & Mecklinger, A. (2008). Better or worse than expected? Aging, learning, and the ERN. Neuropsychologia, 46(2), 521–539.  https://doi.org/10.1016/j.neuropsychologia.2007.09.001 Google Scholar
  41. Fava, M. (2003). Diagnosis and definition of treatment-resistant depression. Biological Psychiatry  https://doi.org/10.1016/S0006-3223(03)00231-2
  42. Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 50–58.  https://doi.org/10.1016/j.neuroimage.2014.06.058 Google Scholar
  43. Foti, D., Weinberg, A., Bernat, E. M., & Proudfit, G. H. (2015). Anterior cingulate activity to monetary loss and basal ganglia activity to monetary gain uniquely contribute to the feedback negativity. Clinical Neurophysiology, 126(7), 1338–1347.  https://doi.org/10.1016/j.clinph.2014.08.025 Google Scholar
  44. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., & Pascual-Leone, A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry, 72(7), 595–603.  https://doi.org/10.1016/j.biopsych.2012.04.028 Google Scholar
  45. Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–501.  https://doi.org/10.1016/j.neuron.2005.06.020 Google Scholar
  46. Gard, D. E., Gard, M. G., Kring, A. M., & John, O. P. (2006). Anticipatory and consummatory components of the experience of pleasure: A scale development study. Journal of Research in Personality, 40(6), 1086–1102.  https://doi.org/10.1016/j.jrp.2005.11.001 Google Scholar
  47. Gheza, D., De Raedt, R., Baeken, C., & Pourtois, G. (2018). Integration of reward with cost anticipation during performance monitoring revealed by ERPs and EEG spectral perturbations. NeuroImage, 173.  https://doi.org/10.1016/j.neuroimage.2018.02.049
  48. Gotlib, I. H., Ranganath, C., & Rosenfeld, J. P. (1998). Frontal EEG alpha asymmetry, depression, and cognitive functioning. Cognition & Emotion, 12(3), 449–478.  https://doi.org/10.1080/026999398379673 Google Scholar
  49. Gray, C. M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, 86(5), 1698–1702.  https://doi.org/10.1073/pnas.86.5.1698 Google Scholar
  50. Greden, J. F. (2001). The burden of disease for treatment-resistant depression. The Journal of Clinical Psychiatry, 62 Suppl 1(suppl 16), 26–31. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11480881 Google Scholar
  51. Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 50(6), 550–562.  https://doi.org/10.1111/psyp.12040 Google Scholar
  52. Hamilton, M. (1980). Rating depressive patients. Journal of Clinical Psychiatry, 41(12 II), 21–24.Google Scholar
  53. Harmon-Jones, E., & Allen, J. J. (1997). Behavioral activation sensitivity and resting frontal EEG asymmetry: covariation of putative indicators related to risk for mood disorders. Journal of Abnormal Psychology, 106(1), 159–163.  https://doi.org/10.1037/0021-843X.106.1.159 Google Scholar
  54. Harmon-Jones, E., & Gable, P. A. (2017). On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence. Psychophysiology, (December 2016).  https://doi.org/10.1111/psyp.12879
  55. Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology  https://doi.org/10.1038/sj.npp.1300506
  56. Henriques, J. B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology, 100(4), 535–545.  https://doi.org/10.1037/0021-843X.100.4.535 Google Scholar
  57. Henriques, J. B., & Davidson, R. J. (2000). Decreased responsiveness to reward in depression. Cognition & Emotion, 14(5), 711–724.  https://doi.org/10.1080/02699930050117684 Google Scholar
  58. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.  https://doi.org/10.1037/0033-295X.109.4.679 Google Scholar
  59. Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E. (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688–697.  https://doi.org/10.1111/j.1469-8986.2008.00668.x Google Scholar
  60. Holroyd, C. B., & Umemoto, A. (2016). The research domain criteria framework: The case for anterior cingulate cortex. Neuroscience & Biobehavioral Reviews, 71, 418–443.  https://doi.org/10.1016/j.neubiorev.2016.09.021 Google Scholar
  61. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587–1596.  https://doi.org/10.1162/jocn.2010.21548 Google Scholar
  62. Kessler, R. C., & Bromet, E. J. (2013). The epidemiology of depression across cultures. Annual Review of Public Health, 34(1), 119–138.  https://doi.org/10.1146/annurev-publhealth-031912-114409 Google Scholar
  63. Koban, L., & Pourtois, G. (2014). Brain systems underlying the affective and social monitoring of actions: An integrative review. Neuroscience and Biobehavioral Reviews, 46(P1), 71–84.  https://doi.org/10.1016/j.neubiorev.2014.02.014 Google Scholar
  64. Kunisato, Y., Okamoto, Y., Ueda, K., Onoda, K., Okada, G., Yoshimura, S., … Yamawaki, S. (2012). Effects of depression on reward-based decision making and variability of action in probabilistic learning. Journal of Behavior Therapy and Experimental Psychiatry, 43(4), 1088–1094.  https://doi.org/10.1016/j.jbtep.2012.05.007
  65. Miller, G. A., Crocker, L. D., Spielberg, J. M., Infantolino, Z. P., & Heller, W. (2013). Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology. Frontiers in Integrative Neuroscience, 7(January), 1–9.  https://doi.org/10.3389/fnint.2013.00002 Google Scholar
  66. Moscovitch, D. A., Santesso, D. L., Miskovic, V., McCabe, R. E., Antony, M. M., & Schmidt, L. A. (2011). Frontal EEG asymmetry and symptom response to cognitive behavioral therapy in patients with social anxiety disorder. Biological Psychology, 87(3), 379–385.  https://doi.org/10.1016/j.biopsycho.2011.04.009 Google Scholar
  67. Nalborczyk, L., Batailler, C., Loevenbruck, H., Vilain, A., & Bürkner, P. C. (in press). An Introduction to Bayesian Multilevel Models Using brms: A Case Study of Gender Effects on Vowel Variability in Standard Indonesian. Journal of Speech, Language, and Hearing Research, (in press).Google Scholar
  68. Nelson, B. D., Kessel, E. M., Klein, D. N., & Shankman, S. A. (2017). Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward. Psychophysiology, (April 2017), 1–14.  https://doi.org/10.1111/psyp.12892
  69. Nigbur, R., Cohen, M. X., Ridderinkhof, K. R., & Stürmer, B. (2012). Theta dynamics reveal domain-specific control over stimulus and response conflict. Journal of Cognitive Neuroscience, 24(5), 1264–1274.  https://doi.org/10.1162/jocn_a_00128 Google Scholar
  70. Nusslock, R., Walden, K., & Harmon-Jones, E. (2015). Asymmetrical frontal cortical activity associated with differential risk for mood and anxiety disorder symptoms: An RDoC perspective. International Journal of Psychophysiology, 98(2), 249–261.  https://doi.org/10.1016/j.ijpsycho.2015.06.004 Google Scholar
  71. Olvet, D. M., & Hajcak, G. (2009). The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clinical Psychology Review, 28(8), 1343–1354.  https://doi.org/10.1016/j.cpr.2008.07.003.The Google Scholar
  72. Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.  https://doi.org/10.1016/0013-4694(89)90180-6 Google Scholar
  73. Pizzagalli, D. A. (2014). Depression, Stress, and Anhedonia: Toward a Synthesis and Integrated Model. Annual Review of Clinical Psychology, 10(1), 393–423.  https://doi.org/10.1146/annurev-clinpsy-050212-185606 Google Scholar
  74. Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43(1), 76–87.  https://doi.org/10.1016/j.jpsychires.2008.03.001 Google Scholar
  75. Pizzagalli, D. A., Sherwood, R. J., Henriques, J. B., & Davidson, R. J. (2005). Frontal brain asymmetry and reward responsiveness: A source-localization study. Psychological Science, 16(10), 805–813.  https://doi.org/10.1111/j.1467-9280.2005.01618.x Google Scholar
  76. Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449–459.  https://doi.org/10.1111/psyp.12370 Google Scholar
  77. R Core Team. (2017). R. R Core Team. https://doi.org/3-900051-14-3
  78. Rossion, B., & Pourtois, G. (2004). Revisiting Snodgrass and Vanderwart’s object pictorial set: The role of surface detail in basic-level object recognition. Perception, 33(2), 217–236.  https://doi.org/10.1068/p5117 Google Scholar
  79. Rush, A. J., Thase, M. E., & Dubé, S. (2003). Research issues in the study of difficult-to-treat depression. Biological Psychiatry  https://doi.org/10.1016/S0006-3223(03)00088-X
  80. Rutledge, R. B., Moutoussis, M., Smittenaar, P., Zeidman, P., Taylor, T., Hrynkiewicz, L., … Dolan, R. J. (2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74(8), 790.  https://doi.org/10.1001/jamapsychiatry.2017.1713
  81. Salamone, J. D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76(3), 470–485.  https://doi.org/10.1016/j.neuron.2012.10.021 Google Scholar
  82. Salamone, J. D., Correa, M., Farrar, A., & Mingote, S. M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191(3), 461–482.  https://doi.org/10.1007/s00213-006-0668-9 Google Scholar
  83. Salamone, J. D., Correa, M., Nunes, E. J., Randall, P. A., & Pardo, M. (2012). The behavioral pharmacology of effort-related choice behavior: Dopamine, adenosine and beyond. Journal of the Experimental Analysis of Behavior, 97(1), 125–46.  https://doi.org/10.1901/jeab.2012.97-125 Google Scholar
  84. Shankman, S. A., Klein, D. N., Tenke, C. E., & Bruder, G. E. (2007). Reward sensitivity in depression: A biobehavioral study. Journal of Abnormal Psychology, 116(1), 95–104.  https://doi.org/10.1037/0021-843X.116.1.95 Google Scholar
  85. Smith, E. E., Cavanagh, J. F., & Allen, J. J. B. (2017). Intracranial source activity (eLORETA) related to scalp-level asymmetry scores and depression status. Psychophysiology, (July 2017), 1–16.  https://doi.org/10.1111/psyp.13019
  86. Smith, E. E., Reznik, S. J., Stewart, J. L., & Allen, J. J. B. (2017). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology, 111, 98–114.  https://doi.org/10.1016/j.ijpsycho.2016.11.005 Google Scholar
  87. Smith, E. H., Banks, G. P., Mikell, C. B., Cash, S. S., Patel, S. R., Eskandar, E. N., & Sheth, S. A. (2015). Frequency-dependent representation of reinforcement-related information in the human medial and lateral prefrontal cortex. Journal of Neuroscience, 35(48), 15827–15836.  https://doi.org/10.1523/JNEUROSCI.1864-15.2015 Google Scholar
  88. Snaith, R. P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P. (1995). A scale for the assessment of hedonic tone. The Snaith-Hamilton Pleasure Scale. British Journal of Psychiatry, 167(JULY), 99–103.  https://doi.org/10.1192/bjp.167.1.99 Google Scholar
  89. Stewart, J. L., Bismark, A. W., Towers, D. N., Coan, J. A., & Allen, J. J. B. (2010). Resting frontal EEG asymmetry as an endophenotype for depression risk: Sex-specific patterns of frontal brain asymmetry. Journal of Abnormal Psychology, 119(3), 502–512.  https://doi.org/10.1037/a0019196 Google Scholar
  90. Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. B. (2011). Frontal EEG asymmetry during emotional challenge differentiates individuals with and without lifetime major depressive disorder. Journal of Affective Disorders, 129(1–3), 167–174.  https://doi.org/10.1016/j.jad.2010.08.029 Google Scholar
  91. Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. B. (2014). Resting and task-elicited prefrontal EEG alpha asymmetry in depression: Support for the capability model. Psychophysiology, 51(5), 446–455.  https://doi.org/10.1111/psyp.12191 Google Scholar
  92. Tallon-Baudry, & Bertrand. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151–162.  https://doi.org/10.1016/S1364-6613(99)01299-1 Google Scholar
  93. The MathWorks Inc. (2013). MATLAB. Natick, MA, USA.  https://doi.org/10.1201/9781420034950
  94. Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. Journal of Abnormal Psychology, 115(4), 715–729.  https://doi.org/10.1037/0021-843X.115.4.715 Google Scholar
  95. Thomsen, K. R. (2015). Measuring anhedonia: Impaired ability to pursue, experience, and learn about reward. Frontiers in Psychology, 6(September), 1409.  https://doi.org/10.3389/fpsyg.2015.01409 Google Scholar
  96. Treadway, M. T., Bossaller, N., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553–558.  https://doi.org/10.1037/a0028813 Google Scholar
  97. Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews, 35(3), 537–555.  https://doi.org/10.1016/j.neubiorev.2010.06.006 Google Scholar
  98. Ullsperger, M., Fischer, A. G., Nigbur, R., & Endrass, T. (2014). Neural mechanisms and temporal dynamics of performance monitoring. Trends in Cognitive Sciences, 18(5), 259–267.  https://doi.org/10.1016/j.tics.2014.02.009 Google Scholar
  99. Vaidyanathan, U., Nelson, L. D., & Patrick, C. J. (2012). Clarifying domains of internalizing psychopathology using neurophysiology. Psychological Medicine, 42(03), 447–459.  https://doi.org/10.1017/S0033291711001528 Google Scholar
  100. van de Vijver, I., Cohen, M. X., & Ridderinkhof, K. R. (2014). Aging affects medial but not anterior frontal learning-related theta oscillations. Neurobiology of Aging, 35(3), 692–704.  https://doi.org/10.1016/j.neurobiolaging.2013.09.006 Google Scholar
  101. van de Vijver, I., Ridderinkhof, K. R., & Cohen, M. X. (2011). Frontal oscillatory dynamics predict feedback learning and action adjustment. Journal of Cognitive Neuroscience, 23(12), 4106–4121.  https://doi.org/10.1162/jocn_a_00110 Google Scholar
  102. van der Vinne, N., Vollebregt, M. A., van Putten, M. J. A. M., & Arns, M. (2017). Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage: Clinical, 16(July), 79–87.  https://doi.org/10.1016/j.nicl.2017.07.006 Google Scholar
  103. Vrieze, E., Pizzagalli, D. A., Demyttenaere, K., Hompes, T., Sienaert, P., De Boer, P., … Claes, S. (2013). Reduced reward learning predicts outcome in major depressive disorder. Biological Psychiatry, 73(7), 639–645.  https://doi.org/10.1016/j.biopsych.2012.10.014
  104. Wang, C. (2005). Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. Journal of Neuroscience, 25(3), 604–613.  https://doi.org/10.1523/JNEUROSCI.4151-04.2005 Google Scholar
  105. Weinberg, A., Liu, H., Hajcak, G., & Shankman, S. A. (2015). Blunted neural response to rewards as a vulnerability factor for depression: Results from a family study. Journal of Abnormal Psychology, 124(4), 878–889.  https://doi.org/10.1037/abn0000081 Google Scholar
  106. Weinberg, A., Riesel, A., & Hajcak, G. (2012). Integrating multiple perspectives on error-related brain activity: The ERN as a neural indicator of trait defensive reactivity. Motivation and Emotion, 36(1), 84–100.  https://doi.org/10.1007/s11031-011-9269-y Google Scholar
  107. Weinberg, A., & Shankman, S. A. (2016). Blunted reward processing in remitted melancholic depression. Clinical Psychological Science, 2167702616633158.  https://doi.org/10.1177/2167702616633158
  108. Whitton, A. E., Kakani, P., Foti, D., Van’t Veer, A., Haile, A., Crowley, D. J., & Pizzagalli, D. A. (2016). Blunted neural responses to reward in remitted major depression: A high-density event-related potential study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(1), 87–95.  https://doi.org/10.1016/j.bpsc.2015.09.007 Google Scholar
  109. Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cerebral Cortex, 15(5), 535–544.  https://doi.org/10.1093/cercor/bhh153 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Cognitive and Affective Psychophysiology Laboratory, Department of Experimental Clinical & Health PsychologyGhent UniversityGhentBelgium
  2. 2.Department of Psychiatry and Medical PsychologyGhent University, Universitair ZiekenhuisGhentBelgium
  3. 3.Department of PsychiatryUniversity Hospital (UZBrussel)BrusselsBelgium
  4. 4.Ghent Experimental Psychiatry (GHEP) labGhent UniversityGhentBelgium
  5. 5.Psychopathology and Affective Neuroscience Laboratory, Department of Experimental Clinical & Health PsychologyGhent UniversityGhentBelgium

Personalised recommendations