Advertisement

Striatal-frontal network activation during voluntary task selection under conditions of monetary reward

  • Joseph M. OrrEmail author
  • Michael J. Imburgio
  • Jessica A. Bernard
  • Marie T. Banich
Special Issue/Reward Systems, Cognition,and Emotion
  • 35 Downloads

Abstract

During voluntary task selection, a number of internal and external biases may guide such a choice. However, it is not well understood how reward influences task selection when multiple options are possible. To address this issue, we examined brain activation in a voluntary task-switching paradigm while participants underwent fMRI (n = 19). To reinforce the overall goal to choose the tasks randomly, participants were told of a large bonus that they would receive at the end of the experiment for making random task choices. We also examined how occasional, random rewards influenced both task performance and brain activation. We hypothesized that these transient rewards would increase the value of the just-performed task, and therefore bias participants to choose to repeat the same task on the subsequent trial. Contrary to expectations, transient reward had no consistent behavioral effect on subsequent task choice. Nevertheless, the receipt of such rewards did influence activation in brain regions associated with reward processing as well as those associated with goal-directed control. In addition, reward on a prior trial was found to influence activation during task choice on a subsequent trial, with greater activation in a number of executive function regions compared with no-reward trials. We posit that both the random presentation of transient rewards and the overall task bonus for random task choices together reinforced the goal to choose the tasks randomly, which in turn influenced activation in both reward-related regions and those regions involved in abstract goal processing.

Keywords

Cognitive control Decision-making Reward Prefrontal cortex 

Notes

Acknowledgements

This work was supported by National Institute of Mental Health grant P50-079485 to M.T.B. and National Institute on Drug Abuse Grant F32DA034412 to J.M.O. Raw imaging data is available on OpenNeuro at https://openneuro.org/datasets/ds001619.

References

  1. Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007a). Non-linear registration, aka spatial normalisation. FMRIB Technial Report TR07JA2.Google Scholar
  2. Andersson, J. L. R., Jenkinson, M., & Smith, S. M. (2007b). Non-linear optimisation. FMRIB technical report TR07JA1. Retrieved from http://fsl.fmrib.ox.ac.uk/analysis/techrep/tr07ja1/tr07ja1.pdf
  3. Arrington, C. M., & Logan, G. D. (2004). The cost of a voluntary task switch. Psychological Science, 15(9), 610–5.  https://doi.org/10.1111/j.0956-7976.2004.00728.x CrossRefGoogle Scholar
  4. Arrington, C. M., & Logan, G. D. (2005). Voluntary task switching: chasing the elusive homunculus. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(4), 683–702.  https://doi.org/10.1037/0278-7393.31.4.683 Google Scholar
  5. Baddeley, A. D. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, 49A(1), 5–28.  https://doi.org/10.1080/713755608 CrossRefGoogle Scholar
  6. Baddeley, A. D., Emslie, H., Kolodny, J., & Duncan, J. (1998). Random generation and the executive control of working memory. Quarterly Journal of Experimental Psychology, 51A(4), 819–852.  https://doi.org/10.1080/027249898391413 CrossRefGoogle Scholar
  7. Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193–200.  https://doi.org/10.1016/j.tics.2008.02.004 CrossRefGoogle Scholar
  8. Badre, D., & Nee, D. E. (2017). Frontal Cortex and the Hierarchical Control of Behavior. Trends in Cognitive Sciences, 22(2), 170–188.  https://doi.org/10.1016/j.tics.2017.11.005 CrossRefGoogle Scholar
  9. Bahlmann, J., Aarts, E., & D’Esposito, M. (2015). Influence of Motivation on Control Hierarchy in the Human Frontal Cortex. Journal of Neuroscience, 35(7), 3207–3217.  https://doi.org/10.1523/JNEUROSCI.2389-14.2015 CrossRefGoogle Scholar
  10. Boorman, E. D., Behrens, T. E. J., Woolrich, M. W., & Rushworth, M. F. S. (2009). How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron, 62(5), 733–743.  https://doi.org/10.1016/j.neuron.2009.05.014 CrossRefGoogle Scholar
  11. Botvinick, M. M., & Braver, T. S. (2014). Motivation and Cognitive Control: From Behavior to Neural Mechanism. Annual Review of Psychology, 1–31.  https://doi.org/10.1146/annurev-psych-010814-015044
  12. Braem, S. (2017). Conditioning task switching behavior. Cognition, 166, 272–276.  https://doi.org/10.1016/j.cognition.2017.05.037 CrossRefGoogle Scholar
  13. Braem, S., Verguts, T., Roggeman, C., & Notebaert, W. (2012). Reward modulates adaptations to conflict. Cognition, 125(2), 324–332.  https://doi.org/10.1016/j.cognition.2012.07.015 CrossRefGoogle Scholar
  14. Brass, M., & Haggard, P. (2008). The what, when, whether model of intentional action. The Neuroscientist, 14(4), 319–25.  https://doi.org/10.1177/1073858408317417 CrossRefGoogle Scholar
  15. Brass, M., Ullsperger, M., Knoesche, T. R., von Cramon, D. Y., & Phillips, N. a. (2005). Who comes first? The role of the prefrontal and parietal cortex in cognitive control. Journal of Cognitive Neuroscience, 17(9), 1367–75.  https://doi.org/10.1162/0898929054985400
  16. Brass, M., & von Cramon, D. Y. (2002). The role of the frontal cortex in task preparation. Cerebral Cortex, 12(9), 908–914.  https://doi.org/10.1093/cercor/12.9.908 CrossRefGoogle Scholar
  17. Braun, D. A., & Arrington, C. M. (2018). Assessing the role of reward in task selection using a reward-based voluntary task switching paradigm. Psychological Research, 82(1), 54–64.  https://doi.org/10.1007/s00426-017-0919-x
  18. Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–13.  https://doi.org/10.1016/j.tics.2011.12.010 CrossRefGoogle Scholar
  19. Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In C. Jarrold (Ed.), Variation in Working Memory (pp. 76–106). Oxford: Oxford University Press.  https://doi.org/10.3758/s13423-011-0165-y Google Scholar
  20. Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7351–6.  https://doi.org/10.1073/pnas.0808187106 CrossRefGoogle Scholar
  21. Charron, S., & Koechlin, E. (2010). Divided representation of concurrent goals in the human frontal lobes. Science, 328(5976), 360–363.  https://doi.org/10.1126/science.1183614 CrossRefGoogle Scholar
  22. Chiew, K. S., & Braver, T. S. (2014). Dissociable influences of reward motivation and positive emotion on cognitive control. Cognitive, Affective and Behavioral Neuroscience, 14(2), 509–529.  https://doi.org/10.3758/s13415-014-0280-0 CrossRefGoogle Scholar
  23. Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14(5), 1136–1149.  https://doi.org/10.1006/nimg.2001.0922 CrossRefGoogle Scholar
  24. Corr, P. J. (2004). Reinforcement sensitivity theory and personality. Neuroscience & Biobehavioral Reviews, 28(3), 317–332.  https://doi.org/10.1016/J.NEUBIOREV.2004.01.005 CrossRefGoogle Scholar
  25. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006a). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.  https://doi.org/10.1038/nature04766 CrossRefGoogle Scholar
  26. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006b). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.  https://doi.org/10.1038/nature04766 CrossRefGoogle Scholar
  27. Demanet, J., de Baene, W., Arrington, C. M., & Brass, M. (2013). Biasing free choices: The role of the rostral cingulate zone in intentional control. NeuroImage, 72, 207–213.  https://doi.org/10.1016/j.neuroimage.2013.01.052
  28. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22(03).  https://doi.org/10.1017/S0140525X99002046
  29. Forstmann, B. U., Brass, M., Koch, I., & von Cramon, D. Y. (2005). Internally generated and directly cued task sets: an investigation with fMRI. Neuropsychologia, 43(6), 943–52.  https://doi.org/10.1016/j.neuropsychologia.2004.08.008
  30. Forstmann, B. U., Brass, M., Koch, I., & von Cramon, D. Y. (2006). Voluntary selection of task sets revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 18(3), 388–98.  https://doi.org/10.1162/089892906775990589
  31. Fröber, K., & Dreisbach, G. (2014). The differential influences of positive affect, random reward, and performance-contingent reward on cognitive control. Cognitive, Affective and Behavioral Neuroscience, 14(2), 530–547.  https://doi.org/10.3758/s13415-014-0259-x CrossRefGoogle Scholar
  32. Fröber, K., & Dreisbach, G. (2016a). How performance (non-)contingent reward modulates cognitive control. Acta Psychologica, 168, 65–77.  https://doi.org/10.1016/j.actpsy.2016.04.008 CrossRefGoogle Scholar
  33. Fröber, K., & Dreisbach, G. (2016b). How sequential changes in reward magnitude modulate cognitive flexibility: Evidence from voluntary task switching. Journal of Experimental Psychology: Learning Memory and Cognition, 42(2), 285–295.  https://doi.org/10.1037/xlm0000166 Google Scholar
  34. Gray, J. A. (1970). The psychophysiological basis of introversion-extraversion. Behaviour Research and Therapy, 8(3), 249–266.  https://doi.org/10.1016/0005-7967(70)90069-0 CrossRefGoogle Scholar
  35. Haruno, M. (2004). A Neural Correlate of Reward-Based Behavioral Learning in Caudate Nucleus: A Functional Magnetic Resonance Imaging Study of a Stochastic Decision Task. Journal of Neuroscience, 24(7), 1660–1665.  https://doi.org/10.1523/JNEUROSCI.3417-03.2004 CrossRefGoogle Scholar
  36. JASP Team (2018). JASP (Version 0.9)[Computer software]. https://jasp-stats.org/. Accessed 22 June 2018.
  37. Jenkinson, M. (2003). Fast, automated, N-dimensional phase-unwrapping algorithm. Magnetic Resonance in Medicine, 49(1), 193–197.  https://doi.org/10.1002/mrm.10354 CrossRefGoogle Scholar
  38. Jenkinson, M. (2004). Improving the registration of B0-disorted EPI images using calculated cost function weights. NeuroImage, 22, e1544–e1545.Google Scholar
  39. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. M. (2002). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17(2), 825–841.  https://doi.org/10.1006/nimg.2002.1132 CrossRefGoogle Scholar
  40. Jenkinson, M., & Smith, S. M. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143-156.  https://doi.org/10.1006/nimg.2002.1132 CrossRefGoogle Scholar
  41. Kim, C., Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain general and domain preferential brain regions associated with different types of task switching: A Meta-Analysis. Human Brain Mapping, 33(1), 130–142.  https://doi.org/10.1002/hbm.21199 CrossRefGoogle Scholar
  42. Kim, C., Johnson, N. F., Cilles, S. E., & Gold, B. T. (2011). Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. Journal of Neuroscience, 31(13), 4771–9.  https://doi.org/10.1523/JNEUROSCI.5923-10.2011 CrossRefGoogle Scholar
  43. Kleinsorge, T., & Rinkenauer, G. (2012). Effects of monetary incentives on task switching. Experimental Psychology, 59(4), 216–226.  https://doi.org/10.1027/1618-3169/a000146 CrossRefGoogle Scholar
  44. Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399(6732), 148–151.  https://doi.org/10.1038/20178 CrossRefGoogle Scholar
  45. Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision Making and the Avoidance of Cognitive Demand. Journal of Experimental Psychology: General, 139(4), 665–682.  https://doi.org/10.1037/a0020198 CrossRefGoogle Scholar
  46. Kovach, C. K., Daw, N. D., Rudrauf, D., Tranel, D., O’Doherty, J. P., & Adolphs, R. (2012). Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends. Journal of Neuroscience, 32(25), 8434–42.  https://doi.org/10.1523/JNEUROSCI.5468-11.2012 CrossRefGoogle Scholar
  47. Liefooghe, B., Demanet, J., & Vandierendonck, A. (2009). Is advance reconfiguration in voluntary task switching affected by the design employed? Quarterly Journal of Experimental Psychology, 62(5), 850–7.  https://doi.org/10.1080/17470210802570994 CrossRefGoogle Scholar
  48. Liefooghe, B., Demanet, J., & Vandierendonck, A. (2010). Persisting activation in voluntary task switching: it all depends on the instructions. Psychonomic Bulletin & Review, 17(3), 381–6.  https://doi.org/10.3758/PBR.17.3.381 CrossRefGoogle Scholar
  49. Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective, & Behavioral Neuroscience, 8(1), 99–112.  https://doi.org/10.3758/CABN.8.1.99 CrossRefGoogle Scholar
  50. Mayr, U., & Bell, T. (2006). On how to be unpredictable: evidence from the voluntary task-switching paradigm. Psychological Science, 17(9), 774–80.  https://doi.org/10.1111/j.1467-9280.2006.01781.x CrossRefGoogle Scholar
  51. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–507.  https://doi.org/10.1126/science.1100907 CrossRefGoogle Scholar
  52. Müller, J., Dreisbach, G., Goschke, T., Hensch, T., Lesch, K. P., & Brocke, B. (2007). Dopamine and cognitive control: The prospect of monetary gains influences the balance between flexibility and stability in a set-shifting paradigm. European Journal of Neuroscience, 26(12), 3661–3668.  https://doi.org/10.1111/j.1460-9568.2007.05949.x CrossRefGoogle Scholar
  53. Nakao, T., Ohira, H., & Northoff, G. (2012). Distinction between externally vs. Internally guided decision-making: Operational differences, meta-analytical comparisons and their theoretical implications. Frontiers in Neuroscience, 6(MAR), 1–26.  https://doi.org/10.3389/fnins.2012.00031 Google Scholar
  54. Nee, D. E., & D’Esposito, M. (2016). The hierarchical organization of the lateral prefrontal cortex. ELife, 5, 1–26.  https://doi.org/10.7554/eLife.12112 CrossRefGoogle Scholar
  55. Nee, D. E., & D’Esposito, M. (2017). Causal evidence for lateral prefrontal cortex dynamics supporting cognitive control. ELife, 6.  https://doi.org/10.7554/eLife.28040
  56. Neubert, F.-X., Mars, R. B., Sallet, J., & Rushworth, M. F. S. (2015). Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proceedings of the National Academy of Sciences, 112(20), E2695–E2704.  https://doi.org/10.1073/pnas.1410767112 CrossRefGoogle Scholar
  57. Neubert, F.-X., Mars, R. B., Thomas, A. G., Sallet, J., & Rushworth, M. F. S. (2014). Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron, 81(3), 700–13.  https://doi.org/10.1016/j.neuron.2013.11.012 CrossRefGoogle Scholar
  58. Noonan, M. P., Chau, B. K. H., Rushworth, M. F. S., & Fellows, L. K. (2017). Contrasting Effects of Medial and Lateral Orbitofrontal Cortex Lesions on Credit Assignment and Decision-Making in Humans. Journal of Neuroscience, 37(29), 7023–7035.  https://doi.org/10.1523/JNEUROSCI.0692-17.2017 CrossRefGoogle Scholar
  59. Noonan, M. P., Mars, R. B., & Rushworth, M. F. S. (2011). Distinct Roles of Three Frontal Cortical Areas in Reward-Guided Behavior. Journal of Neuroscience, 31(40), 14399–14412.  https://doi.org/10.1523/JNEUROSCI.6456-10.2011 CrossRefGoogle Scholar
  60. Noonan, M. P., Walton, M. E., Behrens, T. E. J., Sallet, J., Buckley, M. J., & Rushworth, M. F. S. (2010). Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proceedings of the National Academy of Sciences, 107(47), 20547–20552.  https://doi.org/10.1073/pnas.1012246107 CrossRefGoogle Scholar
  61. O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14(6), 769–776.  https://doi.org/10.1016/j.conb.2004.10.016 CrossRefGoogle Scholar
  62. O’Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K. J., & Dolan, R. J. (2004). Dissociable Role of Ventral and Dorsal Striatum in Instrumental Conditioning. Science, 304(5669), 452–454.  https://doi.org/10.1126/science.1094285 CrossRefGoogle Scholar
  63. O’Reilly, R. C. (2010). The What and How of prefrontal cortical organization. Trends in Neurosciences, 33(8), 355–361.  https://doi.org/10.1016/j.tins.2010.05.002 CrossRefGoogle Scholar
  64. Orr, J. M., & Banich, M. T. (2014). The neural mechanisms underlying internally and externally guided task selection. NeuroImage, 84, 191–205.  https://doi.org/10.1016/j.neuroimage.2013.08.047 CrossRefGoogle Scholar
  65. Orr, J. M., Carp, J., & Weissman, D. H. (2012). The influence of response conflict on voluntary task switching: a novel test of the conflict monitoring model. Psychological Research, 76(1), 60–73.  https://doi.org/10.1007/s00426-011-0324-9 CrossRefGoogle Scholar
  66. Orr, J. M., Smolker, H. R., & Banich, M. T. (2015). Organization of the human frontal pole revealed by large-scale DTI-based connectivity: Implications for control of behavior. PLoS One, 10(5).  https://doi.org/10.1371/journal.pone.0124797
  67. Orr, J. M., & Weissman, D. H. (2011). Succumbing to bottom-up biases on task choice predicts increased switch costs in the voluntary task switching paradigm. Frontiers in Psychology, 2(February), 31.  https://doi.org/10.3389/fpsyg.2011.00031 Google Scholar
  68. Petrides, M., & Pandya, D. N. (2002). Comparitive cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and the corticocortical connection patterns in the monkey. European Journal of Neuroscience, 16, 291–310.  https://doi.org/10.1046/j.1460-9568.2002.02090.x CrossRefGoogle Scholar
  69. Pruim, R. H. R., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2015a). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage, 112, 278–287.  https://doi.org/10.1016/j.neuroimage.2015.02.063 CrossRefGoogle Scholar
  70. Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015b). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267–277.  https://doi.org/10.1016/j.neuroimage.2015.02.064
  71. Rapoport, A., & Budescu, D. V. (1997). Randomization in individual choice behavior. Psychological Review, 104(3), 603–617.  https://doi.org/10.1037//0033-295X.104.3.603 CrossRefGoogle Scholar
  72. Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman, N. P., & Banich, M. T. (2015). Resting-state Networks Predict Individual Differences in Common and Specific Aspects of Executive Function. NeuroImage, 104, 69–78.  https://doi.org/10.1016/j.neuroimage.2014.09.045 CrossRefGoogle Scholar
  73. Reineberg, A. E., & Banich, M. T. (2016). Functional connectivity at rest is sensitive to individual differences in executive function: A network analysis. Human Brain Mapping, 37(8), 2959–2975.  https://doi.org/10.1002/hbm.23219 CrossRefGoogle Scholar
  74. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16(2), 225–237.  https://doi.org/10.3758/PBR.16.2.225 CrossRefGoogle Scholar
  75. Rudebeck, P. H., Behrens, T. E. J., Kennerley, S. W., Baxter, M. G., Buckley, M. J., Walton, M. E., & Rushworth, M. F. S. (2008). Frontal Cortex Subregions Play Distinct Roles in Choices between Actions and Stimuli. Journal of Neuroscience, 28(51), 13775–13785.  https://doi.org/10.1523/JNEUROSCI.3541-08.2008 CrossRefGoogle Scholar
  76. Rushworth, M. F. S., & Behrens, T. E. J. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11(4), 389–97.  https://doi.org/10.1038/nn2066 CrossRefGoogle Scholar
  77. Rushworth, M. F. S., Noonan, M. P., Boorman, E. D., Walton, M. E., & Behrens, T. E. J. (2011). Frontal Cortex and Reward-Guided Learning and Decision-Making. Neuron, 70(6), 1054–1069.  https://doi.org/10.1016/j.neuron.2011.05.014 CrossRefGoogle Scholar
  78. Sallet, J., Mars, R. B., Noonan, M. P., Neubert, F.-X., Jbabdi, S., O’Reilly, J. X., … Rushworth, M. F. S. (2013). The organization of dorsal frontal cortex in humans and macaques. Journal of Neuroscience, 33(30), 12255–12574.  https://doi.org/10.1523/JNEUROSCI.5108-12.2013 CrossRefGoogle Scholar
  79. Schultz, W. (2006). Behavioral Theories and the Neurophysiology of Reward. Annual Review of Psychology, 57(1), 87–115.  https://doi.org/10.1146/annurev.psych.56.091103.070229 CrossRefGoogle Scholar
  80. Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural Substrate of Prediction and Reward. Science, 275(5306), 1593–1599.  https://doi.org/10.1126/science.275.5306.1593 CrossRefGoogle Scholar
  81. Shen, Y. J., & Chun, M. M. (2011). Increases in rewards promote flexible behavior. Attention, Perception, and Psychophysics, 73(3), 938–952.  https://doi.org/10.3758/s13414-010-0065-7 CrossRefGoogle Scholar
  82. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.  https://doi.org/10.1002/hbm.10062 CrossRefGoogle Scholar
  83. Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98.  https://doi.org/10.1016/j.neuroimage.2008.03.061 CrossRefGoogle Scholar
  84. Smolker, H. R., Depue, B. E., Reineberg, A. E., Orr, J. M., & Banich, M. T. (2015). Individual differences in regional prefrontal grey matter morphometry and fractional anisotropy are associated with different constructs of executive function. Brain Structure & Function, 220(3), 1291–1306.  https://doi.org/10.1007/s00429-014-0723-y CrossRefGoogle Scholar
  85. Soon, C. S., Brass, M., Heinze, H.-J., & Haynes, J.-D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 543–545.  https://doi.org/10.1038/nn.2112 CrossRefGoogle Scholar
  86. Soon, C. S., He, H. H., Bode, S., & Haynes, J.-D. (2013). Predicting free choices for abstract intentions. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6217–6222.  https://doi.org/10.1073/pnas.1212218110 CrossRefGoogle Scholar
  87. Stürmer, B., Nigbur, R., Schacht, A., & Sommer, W. (2011). Reward and punishment effects on error processing and conflict control. Frontiers in Psychology, 2(November), 335.  https://doi.org/10.3389/fpsyg.2011.00335 Google Scholar
  88. Sutton, R. S., & Barto, A. C. (1998). Reinforcement Learning: An Introduction. Cambridge: The MIT Press.Google Scholar
  89. Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of Caudate Activity by Action Contingency. Neuron, 41(2), 281–292.  https://doi.org/10.1016/S0896-6273(03)00848-1 CrossRefGoogle Scholar
  90. Tziortzi, A. C., Haber, S. N., Searle, G. E., Tsoumpas, C., Long, C. J., Shotbolt, P., … Gunn, R. N. (2014). Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography. Cerebral Cortex, 24(5), 1165–1177.  https://doi.org/10.1093/cercor/bhs397 CrossRefGoogle Scholar
  91. Van Essen, D. C., Smith, J., Glasser, M. F., Elam, J., Donahue, C. J., Dierker, D. L., … Harwell, J. (2017). The Brain Analysis Library of Spatial maps and Atlases (BALSA) database. NeuroImage, 144, 270–274.  https://doi.org/10.1016/j.neuroimage.2016.04.002 CrossRefGoogle Scholar
  92. van Steenbergen, H., Band, G. P. H., & Hommel, B. (2009). Reward counteracts conflict adaptation. Evidence for a role of affect in executive control. Psychological Science, 20(12), 1473–7.  https://doi.org/10.1111/j.1467-9280.2009.02470.x CrossRefGoogle Scholar
  93. van Steenbergen, H., Band, G. P. H., & Hommel, B. (2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90(3), 234–241.  https://doi.org/10.1016/j.biopsycho.2012.03.018 CrossRefGoogle Scholar
  94. Winkler, A. M., Ridgway, G. R., Webster, M. a, Smith, S. M., & Nichols, T. E. (2014). Permutation Inference for the General Linear Model. NeuroImage, 92, 381–97.  https://doi.org/10.1016/j.neuroimage.2014.01.060 CrossRefGoogle Scholar
  95. Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data. NeuroImage, 14(6), 1370–1386.  https://doi.org/10.1006/nimg.2001.0931 CrossRefGoogle Scholar
  96. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–675.  https://doi.org/10.1038/NMETH.1635
  97. Yeung, N. (2010). Bottom-up influences on voluntary task switching: the elusive homunculus escapes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(2), 348–62.  https://doi.org/10.1037/a0017894 Google Scholar
  98. Zald, D. H. (2004). Dopamine Transmission in the Human Striatum during Monetary Reward Tasks. Journal of Neuroscience, 24(17), 4105–4112.  https://doi.org/10.1523/JNEUROSCI.4643-03.2004 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Texas A&M Institute for NeuroscienceTexas A&M UniversityCollege StationUSA
  3. 3.Institute of Cognitive ScienceUniversity of Colorado BoulderBoulderUSA
  4. 4.Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderUSA

Personalised recommendations