Advertisement

Alterations in structural rich-club connectivity of the precuneus are associated with depressive symptoms among individuals with subjective memory complaints

  • Geon Ha Kim
  • Jung Yoon Kim
  • Jieun E. Kim
  • Jiyoung Ma
  • Bori R. Kim
  • Jooyeon Jamie Im
  • Hyeonseok S. Jeong
  • Eun Namgung
  • Suji Lee
  • Ilhyang Kang
  • In Kyoon Lyoo
  • Jaeuk HwangEmail author
  • Sujung YoonEmail author
Article

Abstract

The association between subjective memory complaints (SMCs) and depressive symptoms has been widely reported and both have been regarded as risk factors for dementia, such as Alzheimer’s disease (AD). Although SMCs arise as early as in middle age, the exact neural correlates of comorbid depressive symptoms among individuals who are middle-aged and with SMCs have not yet been well investigated. Because rich-club organization of the brain plays a key role in the pathophysiology of various neuropsychiatric disorders, the investigation of rich club organization may provide insight regarding the neurobiological mechanisms of depressive symptoms in SMCs. In the current study, we compared the rich-club organization in the structural brain connectivity between individuals who have SMCs along with depressive symptoms (SMCD) and individuals with SMCs but without depressive symptoms (SMCO). A total of 53 individuals with SMCD and 91 individuals with SMCO participated in the study. For all participants, high-resolution, T1-weighted images and diffusion tensor images were obtained, and the network analysis was performed. Individuals with SMCD had lower connectivity strength between the precuneus and other rich-club nodes than those with SMCO, which was significant after adjusting for potential confounders. Our findings suggest that disruptions of rich-club connectivity strength of the precuenus are associated with depressive symptoms in middle-aged individuals with SMCs. Given that the precuneus is one of the commonly affected regions in the early stages of AD, our findings may imply that the concomitant depressive symptoms in middle-aged individuals with SMCs could reflect structural alterations related to AD.

Keywords

Subjective memory complaints Depressive symptoms Precuneus Structural brain network Network analysis Rich-club organization 

Notes

Author contributions

GHK and JYK: Conception and design, data analysis and interpretation, and manuscript writing; JEK, JM, BK, JI, HJ, EN, SL, IK and IL: Collection and assembly of data and data analysis and interpretation; JH and SY: Conception and design, administrative support, manuscript writing, and final approval of manuscript

Funding

This work was supported from the ICT R&D program of Institute for Information & communications Technology Promotion (B0132-15-1001 to SY) and through the the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2015M3C7A1028376 to JYK) and by the Ministry of Education (2015R1D1A1A01061198 to GHK, and 2016R1A2B2012575 to SY).

Compliance with ethical standards

Conflict of interest

All authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

13415_2018_645_MOESM1_ESM.docx (61 kb)
ESM 1 (DOCX 60 kb)

References

  1. Balash, Y., Mordechovich, M., Shabtai, H., Giladi, N., Gurevich, T., & Korczyn, A. D. (2013). Subjective memory complaints in elders: depression, anxiety, or cognitive decline? Acta Neurol Scand, 127(5), 344-350.  https://doi.org/10.1111/ane.12038 Google Scholar
  2. Balash, Y., Mordechovich, M., Shabtai, H., Merims, D., & Giladi, N. (2010). Subjective memory decline in healthy community-dwelling elders. What does this complain mean? Acta Neurologica Scandinavica, 121(3), 194-197.Google Scholar
  3. Batalle, D., Eixarch, E., Figueras, F., Munoz-Moreno, E., Bargallo, N., Illa, M., . . . Gratacos, E. (2012). Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome. NeuroImage, 60(2), 1352-1366.  https://doi.org/10.1016/j.neuroimage.2012.01.059
  4. Brigola, A. G., Manzini, C. S. S., Oliveira, G. B. S., Ottaviani, A. C., Sako, M. P., & Vale, F. A. C. (2015). Subjective memory complaints associated with depression and cognitive impairment in the elderly: A systematic review. Dement Neuropsychol, 9(1), 51-57.  https://doi.org/10.1590/S1980-57642015DN91000009 Google Scholar
  5. Brown, J. A., Terashima, K. H., Burggren, A. C., Ercoli, L. M., Miller, K. J., Small, G. W., & Bookheimer, S. Y. (2011). Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proceedings of the National Academy of Sciences, 108(51), 20760-20765.Google Scholar
  6. Buckley, R., Saling, M. M., Ames, D., Rowe, C. C., Lautenschlager, N. T., Macaulay, S. L., . . . Ellis, K. A. (2013). Factors affecting subjective memory complaints in the AIBL aging study: biomarkers, memory, affect, and age. Int Psychogeriatr, 25(8), 1307-1315.  https://doi.org/10.1017/s1041610213000665
  7. Buckley, R. F., Maruff, P., Ames, D., Bourgeat, P., Martins, R. N., Masters, C. L., . . . Ellis, K. A. (2016). Subjective memory decline predicts greater rates of clinical progression in preclinical Alzheimer's disease. Alzheimers Dement.  https://doi.org/10.1016/j.jalz.2015.12.013
  8. Byers, A. L., & Yaffe, K. (2011). Depression and risk of developing dementia. Nature Reviews Neurology, 7(6), 323.Google Scholar
  9. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(Pt 3), 564-583.  https://doi.org/10.1093/brain/awl004 Google Scholar
  10. Chen, Y., Chen, K., Zhang, J., Li, X., Shu, N., Wang, J., . . . Reiman, E. M. (2015). Disrupted functional and structural networks in cognitively normal elderly subjects with the APOE ε4 allele. Neuropsychopharmacology, 40(5), 1181-1191.  https://doi.org/10.1038/npp.2014.302
  11. Chen, Y., Liu, Z., Zhang, J., Chen, K., Yao, L., Li, X., . . . Zhang, Z. (2017). Precuneus degeneration in nondemented elderly individuals with APOE ε4: Evidence from structural and functional MRI analyses. Hum Brain Mapp, 38(1), 271-282.  https://doi.org/10.1002/hbm.23359 Google Scholar
  12. Chetelat, G., Villemagne, V. L., Bourgeat, P., Pike, K. E., Jones, G., Ames, D., . . . Rowe, C. C. (2010). Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Ann Neurol, 67(3), 317-324.  https://doi.org/10.1002/ana.21955
  13. Chin, J., Oh, K. J., Seo, S. W., & Na, D. L. (2014). Are depressive symptomatology and self-focused attention associated with subjective memory impairment in older adults? Int Psychogeriatr, 26(4), 573-580.  https://doi.org/10.1017/S104161021300241X Google Scholar
  14. Choi, S. H., Na, D. L., Lee, B. H., Hahm, D. S., Jeong, J. H., Yoon, S. J., . . . Group, D. R. (2001). Estimating the validity of the Korean version of expanded clinical dementia rating (CDR) scale. Journal of the Korean Neurological Association, 19(6), 585-591.Google Scholar
  15. Christopher, G., & MacDonald, J. (2005). The impact of clinical depression on working memory. Cogn Neuropsychiatry, 10(5), 379-399.  https://doi.org/10.1080/13546800444000128 Google Scholar
  16. Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and psychological measurement.Google Scholar
  17. Cook, S., & Marsiske, M. (2006). Subjective memory beliefs and cognitive performance in normal and mildly impaired older adults. Aging Ment Health, 10(4), 413-423.  https://doi.org/10.1080/13607860600638487 Google Scholar
  18. Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(Pt 8), 2382-2395.  https://doi.org/10.1093/brain/awu132 Google Scholar
  19. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., . . . Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968-980.  https://doi.org/10.1016/j.neuroimage.2006.01.021
  20. Dotson, V. M., Davatzikos, C., Kraut, M. A., & Resnick, S. M. (2009). Depressive symptoms and brain volumes in older adults: a longitudinal magnetic resonance imaging study. J Psychiatry Neurosci, 34(5), 367-375.Google Scholar
  21. Fischer, F. U., Wolf, D., Scheurich, A., Fellgiebel, A., & Alzheimer's Disease Neuroimaging Initiative, A. (2015). Altered whole-brain white matter networks in preclinical Alzheimer's disease. NeuroImage: clinical, 8, 660-666.Google Scholar
  22. GadElkarim, J. J., Schonfeld, D., Ajilore, O., Zhan, L., Zhang, A. F., Feusner, J. D., . . . Leow, A. D. (2012). A framework for quantifying node-level community structure group differences in brain connectivity networks. Med Image Comput Comput Assist Interv, 15(Pt 2), 196-203.Google Scholar
  23. Geerlings, M. I., Jonker, C., Bouter, L. M., Adèr, H. J., & Schmand, B. (1999). Association between memory complaints and incident Alzheimer’s disease in elderly people with normal baseline cognition. American Journal of Psychiatry, 156(4), 531-537.Google Scholar
  24. Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., & Beaulieu, C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 19(3), 524-536.  https://doi.org/10.1093/cercor/bhn102 Google Scholar
  25. Goveas, J., Xie, C., Wu, Z., Douglas Ward, B., Li, W., Franczak, M. B., . . . Li, S. J. (2011). Neural correlates of the interactive relationship between memory deficits and depressive symptoms in nondemented elderly: resting fMRI study. Behav Brain Res, 219(2), 205-212.  https://doi.org/10.1016/j.bbr.2011.01.008
  26. Hafkemeijer, A., Altmann-Schneider, I., Oleksik, A. M., van de Wiel, L., Middelkoop, H. A., van Buchem, M. A., . . . Rombouts, S. A. (2013). Increased functional connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connect, 3(4), 353-362.  https://doi.org/10.1089/brain.2013.0144
  27. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7), e159.  https://doi.org/10.1371/journal.pbio.0060159 Google Scholar
  28. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V. J., Meuli, R., & Thiran, J. P. (2007). Mapping human whole-brain structural networks with diffusion MRI. PLoS One, 2(7), e597.  https://doi.org/10.1371/journal.pone.0000597 Google Scholar
  29. Hahn, O. S., Ahn, J. H., Song, S. H., Cho, M. J., Kim, J. K., Bae, J. N., . . . Hahm, B. J. (2000). Development of Korean version of structured clinical interview schedule for DSM-IV axis I disorder: interrater reliability. Journal of Korean Neuropsychiatric Association, 39(2), 362-372.Google Scholar
  30. Hammar, A., Isaksen, L., Schmid, M., Ardal, G., & Strand, M. (2011). Patients with major depression show intact memory performance--given optimal conditions. Appl Neuropsychol, 18(3), 191-196.  https://doi.org/10.1080/09084282.2011.595445 Google Scholar
  31. Hayakawa, Y. K., Sasaki, H., Takao, H., Mori, H., Hayashi, N., Kunimatsu, A., . . . Ohtomo, K. (2013). Structural brain abnormalities in women with subclinical depression, as revealed by voxel-based morphometry and diffusion tensor imaging. Journal of affective disorders, 144(3), 263-268.Google Scholar
  32. Hohman, T. J., Beason-Held, L. L., & Resnick, S. M. (2011). Cognitive complaints, depressive symptoms, and cognitive impairment: are they related? Journal of the American Geriatrics Society, 59(10), 1908-1912.Google Scholar
  33. Houenou, J., Wessa, M., Douaud, G., Leboyer, M., Chanraud, S., Perrin, M., . . . Paillere-Martinot, M. L. (2007). Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex. Mol Psychiatry, 12(11), 1001-1010.  https://doi.org/10.1038/sj.mp.4002010
  34. Hughes, T. F., & Ganguli, M. (2009). Modifiable Midlife Risk Factors for Late-Life Cognitive Impairment and Dementia. Curr Psychiatry Rev, 5(2), 73-92.Google Scholar
  35. Hurtz, S., Woo, E., Kebets, V., Green, A. E., Zoumalan, C., Wang, B., . . . Apostolova, L. G. (2014). Age effects on cortical thickness in cognitively normal elderly individuals. Dement Geriatr Cogn Dis Extra, 4(2), 221-227.  https://doi.org/10.1159/000362872
  36. Jessen, F., Wiese, B., Bachmann, C., Eifflaender-Gorfer, S., Haller, F., Kolsch, H., . . . Dementia in Primary Care Patients Study, G (2010). Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch Gen Psychiatry, 67(4), 414-422.  https://doi.org/10.1001/archgenpsychiatry.2010.30
  37. Jessen, F., Wiese, B., Cvetanovska, G., Fuchs, A., Kaduszkiewicz, H., Kolsch, H., . . . Bickel, H. (2007). Patterns of subjective memory impairment in the elderly: association with memory performance. Psychol Med, 37(12), 1753-1762.  https://doi.org/10.1017/S0033291707001122
  38. Juncos-Rabadan, O., Pereiro, A. X., Facal, D., Rodriguez, N., Lojo, C., Caamano, J. A., . . . Eiroa, P. (2012). Prevalence and correlates of cognitive impairment in adults with subjective memory complaints in primary care centres. Dement Geriatr Cogn Disord, 33(4), 226-232.  https://doi.org/10.1159/000338607
  39. Kalska, H., Punamaki, R.-L., Makinen-Pelli, T., & Saarinen, M. (1999). Memory and metamemory functioning among depressed patients. Applied Neuropsychology, 6(2), 96-107.Google Scholar
  40. Kang, S.-H., Yoon, I.-Y., Lee, S. D., Kim, T., Lee, C. S., Han, J. W., . . . Kim, C.-H. (2017). Subjective memory complaints in an elderly population with poor sleep quality. Aging Ment Health, 21(5), 532-536.Google Scholar
  41. Kaup, A. R., Nettiksimmons, J., LeBlanc, E. S., & Yaffe, K. (2015). Memory complaints and risk of cognitive impairment after nearly 2 decades among older women. Neurology, 85(21), 1852-1858.Google Scholar
  42. Kim, C., Lee, J. Y., Ha, T. H., Choi, J. H., Yu, E.-M., Lee, S. J., . . . Park, M. Y. (2009). The usefulness of the Cambridge Neuropsychological Test Automated Battery (CANTAB) for assessing cognitive functions in the elderly: A pilot study. Journal of the Korean Geriatrics Society, 13(2), 69-78.Google Scholar
  43. Kim, E. Y., & Cho, E. H. (2012). Test/re-test Reliability of the CANTAB Batteries to Evaluate the Neuropsychological Function for Korean Adult.The Korean Journal of Measurement and Evaluation in Physical Education and Sport Science, 14(1), 11-17.Google Scholar
  44. Kim, H. S., An, Y. M., Kwon, J. S., & Shin, M.-S. (2014). A preliminary validity study of the cambridge neuropsychological test automated battery for the assessment of executive function in schizophrenia and bipolar disorder. Psychiatry Investigation, 11(4), 394-401.Google Scholar
  45. Korgaonkar, M. S., Fornito, A., Williams, L. M., & Grieve, S. M. (2014). Abnormal Structural Networks Characterize Major Depressive Disorder: A Connectome Analysis. Biol Psychiatry, 76(7), 567-574.  https://doi.org/10.1016/j.biopsych.2014.02.018 Google Scholar
  46. Kurt, P., Yener, G., & Oguz, M. (2011). Impaired digit span can predict further cognitive decline in older people with subjective memory complaint: a preliminary result. Aging Ment Health, 15(3), 364-369.  https://doi.org/10.1080/13607863.2010.536133 Google Scholar
  47. Laske, C., Sohrabi, H. R., Jasielec, M. S., Muller, S., Koehler, N. K., Graber, S., . . . Dominantly Inherited Alzheimer Network, D. (2015). Diagnostic Value of Subjective Memory Complaints Assessed with a Single Item in Dominantly Inherited Alzheimer's Disease: Results of the DIAN Study. Biomed Res Int, 2015, 828120.  https://doi.org/10.1155/2015/828120
  48. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Phys Rev Lett, 87(19), 198701.Google Scholar
  49. Lavretsky, H., & Kumar, A. (2002). Clinically significant non-major depression: old concepts, new insights. Am J Geriatr Psychiatry, 10(3), 239-255.Google Scholar
  50. Lavretsky, H., Siddarth, P., Kepe, V., Ercoli, L. M., Miller, K. J., Burggren, A. C., . . . Small, G. W. (2009). Depression and anxiety symptoms are associated with cerebral FDDNP-PET binding in middle-aged and older nondemented adults. Am J Geriatr Psychiatry, 17(6), 493-502.Google Scholar
  51. Lebedeva, A., Westman, E., Lebedev, A. V., Li, X., Winblad, B., Simmons, A., . . . Aarsland, D. (2014). Structural brain changes associated with depressive symptoms in the elderly with Alzheimer's disease. J Neurol Neurosurg Psychiatry, 85(8), 930-935.  https://doi.org/10.1136/jnnp-2013-307110
  52. Lehrner, J., Moser, D., Klug, S., Gleiß, A., Auff, E., Dal-Bianco, P., & Pusswald, G. (2014). Subjective memory complaints, depressive symptoms and cognition in patients attending a memory outpatient clinic. International Psychogeriatrics, 26(3), 463-473.Google Scholar
  53. Levine, T. R., & Hullett, C. R. (2002). Eta squared, partial eta squared, and misreporting of effect size in communication research. Human Communication Research, 28(4), 612-625.Google Scholar
  54. Lista, S., Molinuevo, J. L., Cavedo, E., Rami, L., Amouyel, P., Teipel, S. J., . . . Hampel, H. (2015). Evolving Evidence for the Value of Neuroimaging Methods and Biological Markers in Subjects Categorized with Subjective Cognitive Decline. J Alzheimers Dis, 48 Suppl 1, S171-191.  https://doi.org/10.3233/jad-150202
  55. Lo, C. Y., Wang, P. N., Chou, K. H., Wang, J., He, Y., & Lin, C. P. (2010). Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease. J Neurosci, 30(50), 16876-16885.  https://doi.org/10.1523/JNEUROSCI.4136-10.2010 Google Scholar
  56. McColgan, P., Seunarine, K. K., Razi, A., Cole, J. H., Gregory, S., Durr, A., . . . Tabrizi, S. J. (2015). Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease. Brain, 138(Pt 11), 3327-3344.  https://doi.org/10.1093/brain/awv259
  57. McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. J Affect Disord, 119(1-3), 1-8.  https://doi.org/10.1016/j.jad.2009.04.022 Google Scholar
  58. Montejo Carrasco, P., Montenegro-Pena, M., Lopez-Higes, R., Estrada, E., Prada Crespo, D., Montejo Rubio, C., & Garcia Azorin, D. (2017). Subjective Memory Complaints in healthy older adults: Fewer complaints associated with depression and perceived health, more complaints also associated with lower memory performance. Arch Gerontol Geriatr, 70, 28-37.  https://doi.org/10.1016/j.archger.2016.12.007 Google Scholar
  59. Montejo, P., Montenegro, M., Fernández-Blázquez, M. A., Turrero-Nogués, A., Yubero, R., Huertas, E., & Maestú, F. (2014). Association of perceived health and depression with older adults’ subjective memory complaints: contrasting a specific questionnaire with general complaints questions. European Journal of Ageing, 11(1), 77-87.  https://doi.org/10.1007/s10433-013-0286-4 Google Scholar
  60. Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 45(2), 265-269.Google Scholar
  61. Morris, J. C. (1997). Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr, 9 Suppl 1, 173-176; discussion 177-178.Google Scholar
  62. Nebes, R. D., Butters, M. A., Mulsant, B. H., Pollock, B. G., Zmuda, M. D., Houck, P. R., & Reynolds, C. F., 3rd. (2000). Decreased working memory and processing speed mediate cognitive impairment in geriatric depression. Psychol Med, 30(3), 679-691.Google Scholar
  63. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp, 15(1), 1-25.Google Scholar
  64. Onnela, J. P., Saramaki, J., Kertesz, J., & Kaski, K. (2005). Intensity and coherence of motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft Matter Phys, 71(6 Pt 2), 065103.  https://doi.org/10.1103/PhysRevE.71.065103 Google Scholar
  65. Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E., & Robbins, T. W. (1995). Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 33(1), 1-24.Google Scholar
  66. Park, J. (1989). Standardization of Korean version of the mini-mental state examination (MMSE-K) for use in the elderly. Part II. Diagnostic validity. Korean J Neuropsych Assoc, 28, 125-135.Google Scholar
  67. Porter, R. J., Gallagher, P., Thompson, J. M., & Young, A. H. (2003). Neurocognitive impairment in drug-free patients with major depressive disorder. Br J Psychiatry, 182(3), 214-220.Google Scholar
  68. Rahman, S., Sahakian, B. J., Hodges, J. R., Rogers, R. D., & Robbins, T. W. (1999). Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain, 122 ( Pt 8), 1469-1493.Google Scholar
  69. Reisberg, B., & Gauthier, S. (2008). Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer's disease. Int Psychogeriatr, 20(1), 1-16.  https://doi.org/10.1017/S1041610207006412 Google Scholar
  70. Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbitt, P. (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia, 5(5), 266-281.Google Scholar
  71. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069.  https://doi.org/10.1016/j.neuroimage.2009.10.003 Google Scholar
  72. Saunders, N. L., & Summers, M. J. (2010). Attention and working memory deficits in mild cognitive impairment. J Clin Exp Neuropsychol, 32(4), 350-357.  https://doi.org/10.1080/13803390903042379 Google Scholar
  73. Sawyer, K., Corsentino, E., Sachs-Ericsson, N., & Steffens, D. C. (2012). Depression, Hippocampal Volume Changes, and Cognitive Decline in a Clinical Sample of Older Depressed Outpatients and Non-depressed Controls. Aging Ment Health, 16(6), 753-762.  https://doi.org/10.1080/13607863.2012.678478 Google Scholar
  74. Scheef, L., Spottke, A., Daerr, M., Joe, A., Striepens, N., Kolsch, H., . . . Jessen, F. (2012). Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology, 79(13), 1332-1339.  https://doi.org/10.1212/WNL.0b013e31826c1a8d
  75. Schultz, S. A., Oh, J. M., Koscik, R. L., Dowling, N. M., Gallagher, C. L., Carlsson, C. M., . . . Okonkwo, O. C. (2015). Subjective memory complaints, cortical thinning, and cognitive dysfunction in middle-aged adults at risk for AD. Alzheimers Dement (Amst), 1(1), 33-40.  https://doi.org/10.1016/j.dadm.2014.11.010
  76. Seo, E. H., Kim, H., Choi, K. Y., Lee, K. H., & Choo, I. H. (2017). Association of subjective memory complaint and depressive symptoms with objective cognitive functions in prodromal Alzheimer's disease including pre-mild cognitive impairment. J Affect Disord, 217, 24-28.  https://doi.org/10.1016/j.jad.2017.03.062 Google Scholar
  77. Sharma, A. (2013). Cambridge Neuropsychological Test Automated Battery. In F. R. Volkmar (Ed.), Encyclopedia of autism spectrum disorders (pp. 498-515). New York, NY: Springer New York.Google Scholar
  78. Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., . . . He, Y. (2011). Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex, 21(11), 2565-2577. doi:bhr039 [pii]10.1093/cercor/bhr039Google Scholar
  79. Sousa, M., Pereira, A., & Costa, R. (2015). Subjective Memory Complaint and Depressive Symptoms among Older Adults in Portugal. Curr Gerontol Geriatr Res, 2015, 296581.  https://doi.org/10.1155/2015/296581 Google Scholar
  80. Sperling, R. A., LaViolette, P. S., O'Keefe, K., O'Brien, J., Rentz, D. M., Pihlajamaki, M., . . . Hedden, T. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(2), 178-188.Google Scholar
  81. Stewart, R., Dufouil, C., Godin, O., Ritchie, K., Maillard, P., Delcroix, N., . . . Tzourio, C. (2008). Neuroimaging correlates of subjective memory deficits in a community population. Neurology, 70(18), 1601-1607.  https://doi.org/10.1212/01.wnl.0000310982.99438.54
  82. Stewart, R., Godin, O., Crivello, F., Maillard, P., Mazoyer, B., Tzourio, C., & Dufouil, C. (2011). Longitudinal neuroimaging correlates of subjective memory impairment: 4-year prospective community study. Br J Psychiatry, 198(3), 199-205.  https://doi.org/10.1192/bjp.bp.110.078683 Google Scholar
  83. Sun, Y., Dai, Z., Li, Y., Sheng, C., Li, H., Wang, X., . . . Han, Y. (2016). Subjective cognitive decline: mapping functional and structural brain changes-a combined resting-state functional and structural MR imaging study. Radiology, 151771.  https://doi.org/10.1148/radiol.2016151771
  84. Sung, H. M., Kim, J., Park, Y., Bai, D., Lee, S., & Ahn, H. (2008). A Study on the Reliability and the Validity of Korean Version of the Beck Depression Inventory-II(BDI -II). Journal of the Korean sociecty of biological therapies in psychiatry, 14(2), 201-212.Google Scholar
  85. Swainson, R., Hodges, J. R., Galton, C. J., Semple, J., Michael, A., Dunn, B. D., . . . Sahakian, B. J. (2001). Early detection and differential diagnosis of Alzheimer's disease and depression with neuropsychological tasks. Dement Geriatr Cogn Disord, 12(4), 265-280.  https://doi.org/10.1159/000051269
  86. Szymkowicz, S. M., Woods, A. J., Dotson, V. M., Porges, E. C., Nissim, N. R., O'Shea, A., . . . Ebner, N. C. (2018). Associations between subclinical depressive symptoms and reduced brain volume in middle-aged to older adults. Aging Ment Health, 1-12.  https://doi.org/10.1080/13607863.2018.1432030
  87. Taki, Y., Kinomura, S., Awata, S., Inoue, K., Sato, K., Ito, H., . . . Arai, H. (2005). Male elderly subthreshold depression patients have smaller volume of medial part of prefrontal cortex and precentral gyrus compared with age-matched normal subjects: a voxel-based morphometry. Journal of affective disorders, 88(3), 313-320.Google Scholar
  88. Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). precuneus is a functional core of the default-mode network. The Journal of Neuroscience, 34(3), 932-940.  https://doi.org/10.1523/JNEUROSCI.4227-13.2014 Google Scholar
  89. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. J Neurosci, 31(44), 15775-15786.  https://doi.org/10.1523/jneurosci.3539-11.2011 Google Scholar
  90. van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., . . . Kahn, R. S. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783-792.  https://doi.org/10.1001/jamapsychiatry.2013.1328
  91. van der Velde, J., Servaas, M. N., Goerlich, K. S., Bruggeman, R., Horton, P., Costafreda, S. G., & Aleman, A. (2013). Neural correlates of alexithymia: A meta-analysis of emotion processing studies. Neuroscience & Biobehavioral Reviews, 37(8), 1774-1785.  https://doi.org/10.1016/j.neubiorev.2013.07.008 Google Scholar
  92. von Gunten, A., Fox, N. C., Cipolotti, L., & Ron, M. A. (2000). A volumetric study of hippocampus and amygdala in depressed patients with subjective memory problems. J Neuropsychiatry Clin Neurosci, 12(4), 493-498.  https://doi.org/10.1176/jnp.12.4.493 Google Scholar
  93. von Gunten, A., & Ron, M. A. (2004). Hippocampal volume and subjective memory impairment in depressed patients. Eur Psychiatry, 19(7), 438-440.  https://doi.org/10.1016/j.eurpsy.2004.05.003 Google Scholar
  94. Waldorff, F. B., Siersma, V., Vogel, A., & Waldemar, G. (2012). Subjective memory complaints in general practice predicts future dementia: a 4-year follow-up study. Int J Geriatr Psychiatry, 27(11), 1180-1188.  https://doi.org/10.1002/gps.3765 Google Scholar
  95. Wang, R., Beener, T., Sorensen, A. G., & Wedeen, V. J. (2007). Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc Intl Soc Mag Reson Med, 15, 3720.Google Scholar
  96. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440-442.  https://doi.org/10.1038/30918 Google Scholar
  97. Westfall, P. H., Young, S. S., & Wright, S. P. (1993). On adjusting P-values for multiplicity. Biometrics, 49(3), 941-945.Google Scholar
  98. Wu, K.-Y., Hsiao, T., Chen, C.-S., Chen, C.-H., Hsieh, C.-J., Wai, Y.-Y., . . . Liu, C.-Y. (2014). Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on 18 F-florbetapir (AV-45/Amyvid) positron emission tomography. European journal of nuclear medicine and molecular imaging, 41(4), 714-722.Google Scholar
  99. Yan, C., Gong, G., Wang, J., Wang, D., Liu, D., Zhu, C., . . . He, Y. (2011). Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex, 21(2), 449-458.  https://doi.org/10.1093/cercor/bhq111 Google Scholar
  100. Yasuno, F., Kazui, H., Yamamoto, A., Morita, N., Kajimoto, K., Ihara, M., . . . Kishimoto, T. (2015). Resting-state synchrony between the retrosplenial cortex and anterior medial cortical structures relates to memory complaints in subjective cognitive impairment. Neurobiol Aging, 36(6), 2145-2152.  https://doi.org/10.1016/j.neurobiolaging.2015.03.006
  101. Yim, S. J., Yi, D., Byun, M. S., Choe, Y. M., Choi, H. J., Baek, H., . . . Lee, D. Y. (2017). Screening ability of subjective memory complaints, informant-reports for cognitive decline, and their combination in memory clinic setting. Psychiatry Investigation, 14(5), 640-646.Google Scholar
  102. Yin, Y., He, X., Xu, M., Hou, Z., Song, X., Sui, Y., . . . Zhang, Y. (2016). Structural and functional connectivity of default mode network underlying the cognitive impairment in late-onset depression. Scientific reports, 6, 37617.Google Scholar
  103. Yoon, S., Kim, J. E., Hwang, J., Kim, T. S., Kang, H. J., Namgung, E., . . . Lyoo, I. K. (2016). Effects of creatine monohydrate augmentation on brain metabolic and network outcome measures in women with major depressive disorder. Biol Psychiatry, 80(6), 439-447.  https://doi.org/10.1016/j.biopsych.2015.11.027 Google Scholar
  104. Youn, J. C., Kim, K. W., Lee, D. Y., Jhoo, J. H., Lee, S. B., Park, J. H., . . . Woo, J. I. (2009). Development of the Subjective Memory Complaints Questionnaire. Dement Geriatr Cogn Disord, 27(4), 310-317.  https://doi.org/10.1159/000205512
  105. Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J. R., Xu, Q., . . . Lu, G. (2011). Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134(Pt 10), 2912-2928.  https://doi.org/10.1093/brain/awr223
  106. Zhou, H., Li, R., Ma, Z., Rossi, S., Zhu, X., & Li, J. (2016). Smaller gray matter volume of hippocampus/parahippocampus in elderly people with subthreshold depression: a cross-sectional study. BMC Psychiatry, 16(1), 219.Google Scholar
  107. Zlatar, Z. Z., Moore, R. C., Palmer, B. W., Thompson, W. K., & Jeste, D. V. (2014). Cognitive complaints correlate with depression rather than concurrent objective cognitive impairment in the successful aging evaluation baseline sample. J Geriatr Psychiatry Neurol, 27(3), 181-187.  https://doi.org/10.1177/0891988714524628 Google Scholar
  108. Zlatar, Z. Z., Muniz, M., Galasko, D., & Salmon, D. P. (2017). Subjective cognitive decline correlates with depression symptoms and not with concurrent objective cognition in a clinic-based sample of older adults. J Gerontol B Psychol Sci Soc Sci.  https://doi.org/10.1093/geronb/gbw207

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Geon Ha Kim
    • 1
    • 2
  • Jung Yoon Kim
    • 1
    • 3
  • Jieun E. Kim
    • 1
    • 3
  • Jiyoung Ma
    • 1
    • 4
  • Bori R. Kim
    • 1
    • 3
  • Jooyeon Jamie Im
    • 1
    • 4
  • Hyeonseok S. Jeong
    • 5
  • Eun Namgung
    • 1
    • 3
  • Suji Lee
    • 1
    • 3
  • Ilhyang Kang
    • 1
    • 3
  • In Kyoon Lyoo
    • 1
    • 3
    • 6
    • 7
  • Jaeuk Hwang
    • 8
    Email author
  • Sujung Yoon
    • 1
    • 3
    Email author
  1. 1.Ewha Brain InstituteEwha Womans UniversitySeoulSouth Korea
  2. 2.Department of Neurology, College of MedicineEwha Womans University Mokdong HospitalSeoulSouth Korea
  3. 3.Department of Brain and Cognitive SciencesEwha Womans UniversitySeoulSouth Korea
  4. 4.Interdisciplinary Program in Neuroscience, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
  5. 5.Department of Radiology, Incheon St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulSouth Korea
  6. 6.College of Pharmacy, Graduate School of Pharmaceutical SciencesEwha Womans UniversitySeoulSouth Korea
  7. 7.The Brain Institute and Department of PsychiatryUniversity of UtahSalt Lake CityUSA
  8. 8.Department of PsychiatrySoonchunhyang University College of MedicineSeoulSouth Korea

Personalised recommendations