Advertisement

Substance use is associated with reduced devaluation sensitivity

  • Kaileigh A. Byrne
  • A. Ross Otto
  • Bo Pang
  • Christopher J. Patrick
  • Darrell A. WorthyEmail author
Article
  • 111 Downloads

Abstract

Substance use has been linked to impairments in reward processing and decision-making, yet empirical research on the relationship between substance use and devaluation of reward in humans is limited. We report findings from two studies that tested whether individual differences in substance use behavior predicted reward learning strategies and devaluation sensitivity in a nonclinical sample. Participants in Experiment 1 (N = 66) and Experiment 2 (N = 91) completed subscales of the Externalizing Spectrum Inventory and then performed a two-stage reinforcement learning task that included a devaluation procedure. Spontaneous eye blink rate was used as an indirect proxy for dopamine functioning. In Experiment 1, correlational analysis revealed a negative relationship between substance use and devaluation sensitivity. In Experiment 2, regression modeling revealed that while spontaneous eyeblink rate moderated the relationship between substance use and reward learning strategies, substance use alone was related to devaluation sensitivity. These results suggest that once reward-action associations are established during reinforcement learning, substance use predicted reduced sensitivity to devaluation independently of variation in eyeblink rate. Thus, substance use is not only related to increased habit formation but also to difficulty disengaging from learned habits. Implications for the role of the dopaminergic system in habitual responding in individuals with substance use problems are discussed.

Keywords

Substance use Decision-making Reward Devaluation Habit formation 

Notes

Acknowledgements

This article was supported by NIA Grant AG043425 to D.A.W.

Supplementary material

13415_2018_638_MOESM1_ESM.docx (86 kb)
ESM 1 (DOCX 85 kb)

References

  1. Akam, T., Costa, R., & Dayan, P. (2015). Simple plans or sophisticated habits? State, transition and learning interactions in the two-step task. PLoS Computational Biology, 11, e1004648.CrossRefGoogle Scholar
  2. Barbato, G., Ficca, G., Muscettola, G., Fichele, M., Beatrice, M., & Rinaldi, F. (2000). Diurnal variation in spontaneous eye-blink rate. Psychiatry Research, 93, 145–151.CrossRefGoogle Scholar
  3. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8, 1458-1463.CrossRefGoogle Scholar
  4. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309-369.CrossRefGoogle Scholar
  5. Berridge K. C., Robinson T. E., Aldridge J. W. (2009). Dissecting components of reward: “Liking,” “wanting,” and learning. Current Opinion in Pharmacology, 9, 65–73.CrossRefGoogle Scholar
  6. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. Control of cognitive processes: Attention and performance XVIII, 713-737.Google Scholar
  7. Burke, S. N., Thome, A., Plange, K., Engle, J. R., Trouard, T. P., Gothard, K. M., & Barnes, C. A. (2014). Orbitofrontal cortex volume in area 11/13 predicts reward devaluation, but not reversal learning performance, in young and aged monkeys. The Journal of Neuroscience, 34, 9905-9916.CrossRefGoogle Scholar
  8. Burkner, P.C. (2017). Brms: An R package for Bayesian Multilevel Models using Stan. Journal of Statistical Software. 80, 1-28.CrossRefGoogle Scholar
  9. Byrne, K. A., Norris, D. D., & Worthy, D. A. (2016a). Dopamine, depressive symptoms, and decision-making: the relationship between spontaneous eye blink rate and depressive symptoms predicts Iowa Gambling Task performance. Cognitive, Affective, & Behavioral Neuroscience, 16, 23-36.CrossRefGoogle Scholar
  10. Byrne, K. A., Patrick, C. J., & Worthy, D. A. (2016b). Striatal dopamine, externalizing proneness, and substance abuse effects on wanting and learning during reward-based decision making. Clinical Psychological Science, 4, 760-774.CrossRefGoogle Scholar
  11. Cavanagh, J. F., Masters, S. E., Bath, K., & Frank, M. J. (2014). Conflict acts as an implicit cost in reinforcement learning. Nature Communications, 5, 5394.CrossRefGoogle Scholar
  12. Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115, 458–465.CrossRefGoogle Scholar
  13. Colzato, L. S., Slagter, H. A., van den Wildenberg, W. P., & Hommel, B. (2009). Closing one’s eyes to reality: Evidence for a dopaminergic basis of psychoticism from spontaneous eye blink rates. Personality and Individual Differences, 46, 377–380.CrossRefGoogle Scholar
  14. Colzato, L. S., van den Wildenberg, W. P., & Hommel, B. (2008). Reduced spontaneous eye blink rates in recreational cocaine users: Evidence for dopaminergic hypoactivity. PLoS ONE, 3, e3461.CrossRefGoogle Scholar
  15. Colzato, L. S., van Wouwe, N. C., & Hommel, B. (2007). Spontaneous eye-blink rate predicts the strength of visuomotor binding. Neuropsychologia, 45, 2387–2392.CrossRefGoogle Scholar
  16. Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007). Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. The Journal of Neuroscience, 27, 5506-5514.CrossRefGoogle Scholar
  17. Dang, L. C., Samanez-Larkin, G. R., Castrellon, J. J., Perkins, S. F., Cowan, R. L., Newhouse, P. A., & Zald, D. H. (2017). Spontaneous eye blink rate (EBR) is uncorrelated with dopamine D2 receptor availability and unmodulated by dopamine agonism in healthy adults. eNeuro, 4, ENEURO-0211.CrossRefGoogle Scholar
  18. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69, 1204–1215.CrossRefGoogle Scholar
  19. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704-1711.CrossRefGoogle Scholar
  20. De Jong, P. J., & Merckelbach, H. (1990). Eyeblink frequency, rehearsal activity, and sympathetic arousal. International Journal of Neuroscience, 51, 89–94.CrossRefGoogle Scholar
  21. Deserno, L., Huys, Q. J., Boehme, R., Buchert, R., Heinze, H. J., Grace, A. A., & Schlagenhauf, F. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences, 112, 1595-1600.CrossRefGoogle Scholar
  22. Doll, B. B., Bath, K. G., Daw, N. D., & Frank, M. J. (2016). Variability in dopamine genes dissociates model-based and model-free reinforcement learning. Journal of Neuroscience, 36, 1211-1222.CrossRefGoogle Scholar
  23. Doya, K., Samejima, K., Katagiri, K. I., & Kawato, M. (2002). Multiple model-based reinforcement learning. Neural Computation, 14, 1347-1369.CrossRefGoogle Scholar
  24. Dreyer, J. K., Herrik, K. F., Berg, R. W., & Hounsgaard, J. D. (2010). Influence of phasic and tonic dopamine release on receptor activation. The Journal of Neuroscience, 30, 14273-14283.CrossRefGoogle Scholar
  25. Elsworth, J. D., Lawrence, M. S., Roth, R. H., Taylor, J. R., Mailman, R. B., Nichols, D. E., & Redmond, D. E. (1991). D1 and D2 dopamine receptors independently regulate spontaneous blink rate in the vervet monkey. Journal of Pharmacology and Experimental Therapeutics, 259, 595-600.Google Scholar
  26. Ersche, K. D., Roiser, J. P., Robbins, T. W., & Sahakian, B. J. (2008). Chronic cocaine but not Chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology, 197, 421-431.CrossRefGoogle Scholar
  27. Everitt B. J., Robbins T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 1481–1489.CrossRefGoogle Scholar
  28. Fairclough, S. H., & Venables, L. (2006). Prediction of subjective states from psychophysiology: A multivariate approach. Biological Psychology, 71, 100–110.CrossRefGoogle Scholar
  29. Friedel, E., Koch, S. P., Wendt, J., Heinz, A., Deserno, L., & Schlagenhauf, F. (2014). Devaluation and sequential decisions: linking goal-directed and model-based behavior. Frontiers in Human Neuroscience, 8, 587.CrossRefGoogle Scholar
  30. Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognitive, Affective, & Behavioral Neuroscience, 1, 137-160.CrossRefGoogle Scholar
  31. Frank, M. J., & O'Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497-517.CrossRefGoogle Scholar
  32. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., & Daw, N. D. (2016). Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. Elife, 5, e11305.CrossRefGoogle Scholar
  33. Gillan, C. M., Otto, A. R., Phelps, E. A., & Daw, N. D. (2015). Model-based learning protects against forming habits. Cognitive, Affective, & Behavioral Neuroscience, 15, 523-536.CrossRefGoogle Scholar
  34. Gläscher, J., Daw, N., Dayan, P., & O'Doherty, J. P. (2010). States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66, 585-595.CrossRefGoogle Scholar
  35. Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12, 652-669.CrossRefGoogle Scholar
  36. Groman, S. M., James, A. S., Seu, E., Tran, S., Clark, T. A., Harpster, S. N., & Elsworth, J. D. (2014). In the blink of an eye: relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate. The Journal of Neuroscience, 34, 14443-14454.CrossRefGoogle Scholar
  37. Hogarth, L., Chase, H. W., & Baess, K. (2012). Impaired goal-directed behavioural control in human impulsivity. The Quarterly Journal of Experimental Psychology, 65, 305-316.CrossRefGoogle Scholar
  38. Izquierdo, A., & Murray, E. A. (2007). Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning. The Journal of Neuroscience, 27, 1054-1062.CrossRefGoogle Scholar
  39. Jeffreys, H. (1961). Theory of probability. Oxford, England: Oxford University Press.Google Scholar
  40. Jongkees, B. J., & Colzato, L. S. (2016). Spontaneous eye blink rate as predictor of dopamine-related cognitive function-A review. Neuroscience & Biobehavioral Reviews, 71, 58-82.CrossRefGoogle Scholar
  41. Jutkiewicz, E. M., & Bergman, J. (2004). Effects of dopamine D1 ligands on eye blinking in monkeys: efficacy, antagonism, and D1/D2 interactions. Journal of Pharmacology and Experimental Therapeutics, 311, 1008-1015.CrossRefGoogle Scholar
  42. Kahnt, T., Heinzle, J., Park, S. Q., & Haynes, J. D. (2010). The neural code of reward anticipation in human orbitofrontal cortex. Proceedings of the National Academy of Sciences, 107, 6010-6015.CrossRefGoogle Scholar
  43. Kaminer, J., Powers, A. S., Horn, K. G., Hui, C., & Evinger, C. (2011). Characterizing the spontaneous blink generator: an animal model. Journal of Neuroscience, 31, 11256-11267.CrossRefGoogle Scholar
  44. Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain, 106, 643–653.CrossRefGoogle Scholar
  45. Karson, C. N., Dykman, R. A., & Paige, S. R. (1990). Blink rates in schizophrenia. Schizophrenia Bulletin, 16, 345-354.CrossRefGoogle Scholar
  46. Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost-benefit arbitration between multiple reinforcement-learning systems. Psychological Science, 28, 1321-1333.CrossRefGoogle Scholar
  47. Ladas, A., Frantzidis, C., Bamidis, P., & Vivas, A. B. (2014). Eye blink rate as a biological marker of mild cognitive impairment. International Journal of Psychophysiology, 93, 12-16.CrossRefGoogle Scholar
  48. Leong, K. C., Berini, C. R., Ghee, S. M., & Reichel, C. M. (2016). Extended cocaine-seeking produces a shift from goal-directed to habitual responding in rats. Physiology & Behavior, 164, 330-335.CrossRefGoogle Scholar
  49. Li, Y., Vanni-Mercier, G., Isnard, J., Mauguière, F., & Dreher, J. C. (2016). The neural dynamics of reward value and risk coding in the human orbitofrontal cortex. Brain, 139(Pt 4), 1295-1309.CrossRefGoogle Scholar
  50. Loewenstein, G. F. & O'Donoghue, T. (2004). Animal spirits: Affective and deliberative processes in economic behavior. Available at SSRN: http://ssrn.com/abstract=539843
  51. Lucantonio, F., Caprioli, D., & Schoenbaum, G. (2014). Transition from ‘model-based’ to ‘model-free’behavioral control in addiction: involvement of the orbitofrontal cortex and dorsolateral striatum. Neuropharmacology, 76, 407-415.CrossRefGoogle Scholar
  52. Otto, A. R., Gershman, S. J., Markman, A. B., & Daw, N. D. (2013). The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychological Science, 24, 751-761.CrossRefGoogle Scholar
  53. Paolacci, G. and Chandler, J. (2014). Inside the turk: Understanding mechanical turk as a participant pool. Current Directions in Psychological Science, 23, 184-188.CrossRefGoogle Scholar
  54. Patrick, C. J., & Drislane, L. E. (2015). Triarchic model of psychopathy: Origins, operationalizations, and observed linkages with personality and general psychopathology. Journal of Personality, 83, 627-643.CrossRefGoogle Scholar
  55. Patrick, C. J., Kramer, M. D., Krueger, R. F., & Markon, K. E. (2013). Optimizing efficiency of psychopathology assessment through quantitative modeling: Development of a brief form of the Externalizing Spectrum Inventory. Psychological Assessment, 25, 1332–1348.CrossRefGoogle Scholar
  56. Patton J. H., Stanford M. S., Barratt E. S. (1995). Factor structure of the Barratt Impulsiveness Scale. Journal of Clinical Psychology, 51, 768–774.CrossRefGoogle Scholar
  57. Patzelt, E. H., Kurth-Nelson, Z., Lim, K. O., & MacDonald, A. W. (2014). Excessive state switching underlies reversal learning deficits in cocaine users. Drug and Alcohol Dependence, 134, 211-217.CrossRefGoogle Scholar
  58. Pickens, C. L., Saddoris, M. P., Setlow, B., Gallagher, M., Holland, P. C., & Schoenbaum, G. (2003). Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. The Journal of Neuroscience, 23, 11078-11084.CrossRefGoogle Scholar
  59. Redish, A. D., Jensen, S., & Johnson, A. (2008). Addiction as vulnerabilities in the decision process. Behavioral and Brain Sciences, 31, 461-487.Google Scholar
  60. Reiter, A. M., Deserno, L., Kallert, T., Heinze, H. J., Heinz, A., & Schlagenhauf, F. (2016). Behavioral and neural signatures of reduced updating of alternative options in alcohol-dependent patients during flexible decision-making. Journal of Neuroscience, 36, 10935-10948.CrossRefGoogle Scholar
  61. Robbins, T.W. & Everitt, B.J. (1999). Drug addiction: bad habits add up. Nature, 398, 567–570.CrossRefGoogle Scholar
  62. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247-291.CrossRefGoogle Scholar
  63. Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 3137-3146.CrossRefGoogle Scholar
  64. Rudebeck, P. H., & Murray, E. A. (2008). Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. The Journal of Neuroscience, 28, 8338-8343.CrossRefGoogle Scholar
  65. Schoenbaum, G., & Setlow, B. (2004). Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal–amygdalar function. Cerebral Cortex, 15, 1162-1169.CrossRefGoogle Scholar
  66. Sebold, M., Deserno, L., Nebe, S., Schad, D. J., Garbusow, M., Hägele, C., & Rapp, M. A. (2014). Model-based and model-free decisions in alcohol dependence. Neuropsychobiology, 70, 122-131.CrossRefGoogle Scholar
  67. Sebold, M., Nebe, S., Garbusow, M., Guggenmos, M., Schad, D. J., Beck, A., & Zimmermann, U. S. (2017). When habits are dangerous: alcohol expectancies and habitual decision making predict relapse in alcohol dependence. Biological Psychiatry, 82, 847-856.CrossRefGoogle Scholar
  68. Sescousse, G., Ligneul, R., van Holst, R. J., Janssen, L. K., de Boer, F., Janssen, M., & Cools, R. (2017). Spontaneous eye blink rate and dopamine synthesis capacity: Preliminary evidence for an absence of positive correlation. bioRxiv, 215178.Google Scholar
  69. Sharp, M. E., Foerde, K., Daw, N. D., & Shohamy, D. (2015). Dopamine selectively remediates ‘model-based’ reward learning: a computational approach. Brain, 139, 355-364.CrossRefGoogle Scholar
  70. Sjoerds, Z., De Wit, S., Van Den Brink, W., Robbins, T. W., Beekman, A. T. F., Penninx, B. W. J. H., & Veltman, D. J. (2013). Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Translational Psychiatry, 3, e337.CrossRefGoogle Scholar
  71. Slagter, H. A., Georgopoulou, K., & Frank, M. J. (2015). Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes. Neuropsychologia, 71, 126-132.CrossRefGoogle Scholar
  72. Taylor, J. R., Elsworth, J. D., Lawrence, M. S., Sladek, J. R., Jr., Roth, R. H., & Redmond, D. E., Jr. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Experimental Neurology, 158, 214–220.CrossRefGoogle Scholar
  73. Tricomi, E., & Lempert, K. M. (2015). Value and probability coding in a feedback-based =learning task utilizing food rewards. Journal of Neurophysiology, 113, 4-13.CrossRefGoogle Scholar
  74. Tsubota, K., & Nakamori, K. (1993). Dry eyes and video display terminals. New England Journal of Medicine, 328, 584-584.CrossRefGoogle Scholar
  75. Venables N. C., Patrick C. J. (2012). Validity of the Externalizing Spectrum Inventory in a criminal offender sample: Relations with disinhibitory psychopathology, personality, and psychopathic features. Psychological Assessment, 24, 88–100.CrossRefGoogle Scholar
  76. Voon, V., Derbyshire, K., Rück, C., Irvine, M. A., Worbe, Y., Enander, J., & Robbins, T. W. (2015). Disorders of compulsivity: a common bias towards learning habits. Molecular Psychiatry, 20, 345-352.CrossRefGoogle Scholar
  77. Wetzels, R., Matzke, D., Lee, M.D., Rouder, J.N., Iverson, G.J., Wagenmakers, E.J. (2011). Statistical evidence in experimental psychology: An empirical Comparison using 855 t tests. Perspective on Psychological Science, 6, 291-298.CrossRefGoogle Scholar
  78. Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. Neuron, 75, 418-424.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Kaileigh A. Byrne
    • 1
  • A. Ross Otto
    • 2
  • Bo Pang
    • 3
  • Christopher J. Patrick
    • 4
  • Darrell A. Worthy
    • 3
    Email author
  1. 1.Clemson UniversityClemsonUSA
  2. 2.McGill UniversityMontrealCanada
  3. 3.Texas A&M UniversityCollege StationUSA
  4. 4.Florida State UniversityTallahasseeUSA

Personalised recommendations