Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 18, Issue 6, pp 1159–1171 | Cite as

Common mechanisms in error monitoring and action effect monitoring

  • Robert Steinhauser
  • Robert Wirth
  • Wilfried Kunde
  • Markus Janczyk
  • Marco Steinhauser
Article
  • 198 Downloads

Abstract

In the present study, we considered error-related brain activity in event-related potentials, to investigate the relationship between error monitoring—that is, the detection and evaluation of erroneous responses—and action effect monitoring—that is, monitoring of the sensory consequences of behavior. To this end, participants worked on a task-switching paradigm that consisted of a free-choice task, in which a puzzle piece had to be attached to an existing one (the prime task), and a subsequent color flanker task (the probe task). We examined whether unexpected action effects in the prime task would affect the subsequent error monitoring in the probe task. We found the neural correlates of error monitoring during the probe task, the error-related negativity as well as the error positivity, to be increased after unexpected action effects in the prime task. In contrast, the neural correlates of visual attention were decreased after unexpected action effects, in line with recent findings on an attenuation of sensory processing after errors. Our results demonstrate a direct link between monitoring processes in the two tasks. We propose that both error monitoring and action effect monitoring rely on a common generic monitoring system related to novelty detection or affective processing. Preactivating this system by means of unexpected action effects increases the sensitivity for detecting an error in the subsequent task.

Keywords

Cognitive control ERP Event processing 

References

  1. Aarts, K., De Houwer, J., & Pourtois, G. (2012). Evidence for the automatic evaluation of self-generated actions. Cognition, 124, 117–127.  https://doi.org/10.1016/j.cognition.2012.05.009 CrossRefGoogle Scholar
  2. Aarts, K., De Houwer, J., & Pourtois, G. (2013). Erroneous and correct actions have a different affective valence: Evidence from ERPs. Emotion, 13, 960–973.  https://doi.org/10.1037/a0032808 CrossRefGoogle Scholar
  3. Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338–1344.  https://doi.org/10.1038/nn.2921 CrossRefGoogle Scholar
  4. Band, G. P. H., van Steenbergen, H., Ridderinkhof, K. R., Falkenstein, M., & Hommel, B. (2009). Action-effect negativity: Irrelevant action effects are monitored like relevant feedback. Biological Psychology, 82, 211–218.CrossRefGoogle Scholar
  5. Barcelo, F., Escera, C., Corral, M. J., & Periáñez, J. A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18, 1734–1748.  https://doi.org/10.1162/jocn.2006.18.10.1734 CrossRefGoogle Scholar
  6. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.CrossRefGoogle Scholar
  7. Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision and semantic priming. Electroencephalography and Clinical Neurophysiology, 60, 343–355.CrossRefGoogle Scholar
  8. Boldt, A., & Yeung, N. (2015). Shared neural markers of decision confidence and error detection. Journal of Neuroscience, 35, 3478–3484.  https://doi.org/10.1523/JNEUROSCI.0797-14.2015 CrossRefGoogle Scholar
  9. Brown, M. W., & Xiang, J. Z. (1998). Recognition memory: Neuronal substrates of the judgement of prior occurrence. Progress in Neurobiology, 55, 149–189.CrossRefGoogle Scholar
  10. Buzzell, G. A., Beatty, P. J., Paquette, N. A., Roberts, D. M., & McDonald, C. G. (2017). Error-induced blindness: Error detection leads to impaired sensory processing and lower accuracy at short response–stimulus intervals. Journal of Neuroscience, 37, 2895–2903.CrossRefGoogle Scholar
  11. Cardoso-Leite, P., Mamassian, P., Schütz-Bosbach, S., & Waszak, F. (2010). A new look at sensory attenuation: Action-effect anticipation affects sensitivity, not response bias. Psychological Science, 21, 1740–1745.  https://doi.org/10.1177/0956797610389187 CrossRefGoogle Scholar
  12. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45.CrossRefGoogle Scholar
  13. Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233.  https://doi.org/10.3389/fpsyg.2011.00233 CrossRefGoogle Scholar
  14. Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46, 1288–1298.  https://doi.org/10.1111/j.1469-8986.2009.00860 CrossRefGoogle Scholar
  15. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.  https://doi.org/10.1016/j.jneumeth.2003.10.009 CrossRefGoogle Scholar
  16. Desantis, A., Roussel, C., & Waszak, F. (2014). The temporal dynamics of the perceptual consequences of action-effect prediction. Cognition, 132, 243–250.CrossRefGoogle Scholar
  17. Dreisbach, G., & Fischer, R. (2012). Conflicts as aversive signals. Brain and Cognition, 78, 94–98.  https://doi.org/10.1016/j.bandc.2011.12.003 CrossRefGoogle Scholar
  18. Dudschig, C., & Jentzsch, I. (2009). Speeding before and slowing after errors: Is it all just strategy? Brain Research, 1296, 56–62.CrossRefGoogle Scholar
  19. Elsner, B., Hommel, B., Mentschel, C., Drzezga, A., Prinz, W., Conrad, B., & Siebner, H. (2002). Linking actions and their perceivable consequences in the human brain. NeuroImage, 17, 364–372.CrossRefGoogle Scholar
  20. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455.  https://doi.org/10.1016/0013-4694(91)90062-9 CrossRefGoogle Scholar
  21. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.CrossRefGoogle Scholar
  22. Fischer, A. G., Klein, T. A., & Ullsperger, M. (2017). Comparing the error-related negativity across groups : The impact of error- and trial-number differences. Psychophysiology, 54, 998–1009.CrossRefGoogle Scholar
  23. Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170.CrossRefGoogle Scholar
  24. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.  https://doi.org/10.1111/j.1467-9280.1993.tb00586.x CrossRefGoogle Scholar
  25. Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009). Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47, 2023–2030.CrossRefGoogle Scholar
  26. Gruber, T., & Müller, M. M. (2002). Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cognitive Brain Research, 13, 377–392.CrossRefGoogle Scholar
  27. Grützmann, R., Endrass, T., Klawohn, J., & Kathmann, N. (2014). Response accuracy rating modulates ERN and Pe amplitudes. Biological Psychology, 96, 1–7.CrossRefGoogle Scholar
  28. Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2014). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84, 159–168.CrossRefGoogle Scholar
  29. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–708.  https://doi.org/10.1037/0033-295X.109.4.679 CrossRefGoogle Scholar
  30. Holroyd, C. B., Dien, J., & Coles, M. G. H. (1998). Error-related scalp potentials elicited by hand and foot movements: Evidence for an output-independent error-processing system in humans. Neuroscience Letters, 242, 65–68.CrossRefGoogle Scholar
  31. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878, disc. 878–937.  https://doi.org/10.1017/S0140525X01000103 CrossRefGoogle Scholar
  32. Houtman, F., & Notebaert, W. (2013). Blinded by an error. Cognition, 128, 228–236.CrossRefGoogle Scholar
  33. Hughes, G., & Waszak, F. (2011). ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. NeuroImage, 56, 1632–1640.CrossRefGoogle Scholar
  34. Iwanaga, M. I. O., & Nittono, H. (2010). Unexpected action effects elicit deviance-related brain potentials and cause behavioral delay. Psychophysiology, 47, 281–288.CrossRefGoogle Scholar
  35. James, W. (1890). The principles of psychology. New York, NY: Dover.Google Scholar
  36. Janczyk, M., Durst, M., & Ulrich, R. (2017). Action selection by temporally distal goal states. Psychonomic Bulletin & Review, 24, 467–473.CrossRefGoogle Scholar
  37. Janczyk, M., & Lerche, V. (2018). A diffusion model analysis of the response–effect compatibility effect. Journal of Experimental Psychology: General. Advance online publication.  https://doi.org/10.1037/xge0000430
  38. Jentzsch, I., & Dudschig, C. (2009). Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing. Quarterly Journal of Experimental Psychology, 62, 209–218.CrossRefGoogle Scholar
  39. Jessup, R. K., Busemeyer, J. R., & Brown, J. W. (2010). Error effects in anterior cingulate cortex reverse when error likelihood is high. Journal of Neuroscience, 30, 3467–3472.CrossRefGoogle Scholar
  40. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136, 849–874.  https://doi.org/10.1037/a0019842 CrossRefGoogle Scholar
  41. Larson, M. J., Perlstein, W. M., Stigge-Kaufman, D., Kelly, K. G., & Dotson, V. M. (2006). Affective context-induced modulation of the error-related negativity. NeuroReport, 17, 329–333.CrossRefGoogle Scholar
  42. Maier, M. E., Di Pellegrino, G., & Steinhauser, M. (2012). Enhanced error-related negativity on flanker errors: Error expectancy or error significance? Psychophysiology, 49, 899–908.CrossRefGoogle Scholar
  43. Maier, M. E., Scarpazza, C., Starita, F., Filogamo, R., & Làdavas, E. (2016). Error monitoring is related to processing internal affective states. Cognitive, Affective, & Behavioral Neuroscience, 16, 1050–1062.  https://doi.org/10.3758/s13415-016-0452-1 CrossRefGoogle Scholar
  44. Maier, M. E., & Steinhauser, M. (2016). Error significance but not error expectancy predicts error-related negativities for different error types. Behavioural Brain Research, 297, 259–267.CrossRefGoogle Scholar
  45. Melcher, T., Weidema, M., Eenshuistra, R. M., Hommel, B., & Gruber, O. (2008). The neural substrate of the ideomotor principle: An event-related fMRI analysis. NeuroImage, 39, 1274–1288.CrossRefGoogle Scholar
  46. Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple task performance: Part 1. Basic mechanisms. Psychological Review, 104, 3–65.  https://doi.org/10.1037/0033-295X.104.1.3 CrossRefGoogle Scholar
  47. Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 227–234.  https://doi.org/10.1037/h0031564 CrossRefGoogle Scholar
  48. Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9, 788–798.  https://doi.org/10.1162/jocn.1997.9.6.788 CrossRefGoogle Scholar
  49. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4, 61–64.CrossRefGoogle Scholar
  50. Näätänen, R., & Gaillard, A. W. K. (1983). The orienting reflex and the N2 deflection of the event-related potential (ERP). In R. Näätänen & A. W. K. Gaillard (Eds.), Tutorials in ERP research endogenous components (pp. 119–141). Amsterdam, The Netherlands: North-Holland.CrossRefGoogle Scholar
  51. Naefgen, C., Dambacher, M., & Janczyk, M. (2017). Why free choices take longer than forced choices: Evidence from response threshold manipulations. Psychological Research. Advance online publication.  https://doi.org/10.1007/s00426-017-0887-1
  52. Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P. H., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38, 752–760.  https://doi.org/10.1111/1469-8986.3850752 CrossRefGoogle Scholar
  53. Oliveira, F. T. P., McDonald, J. J., & Goodman, D. (2007). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the representation of action–outcome associations. Journal of Cognitive Neuroscience, 19, 1994–2004.  https://doi.org/10.1162/jocn.2007.19.12.1994 CrossRefGoogle Scholar
  54. Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing: On the functional significance of the Pe vis-à-vis the ERN/Ne. Journal of Psychophysiology, 19, 319–329.CrossRefGoogle Scholar
  55. Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244.  https://doi.org/10.1037/0033-2909.116.2.220 CrossRefGoogle Scholar
  56. Pfister, R., & Kunde, W. (2013). Dissecting the response in response–effect compatibility. Experimental Brain Research, 224, 647–655.CrossRefGoogle Scholar
  57. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.  https://doi.org/10.1016/j.clinph.2007.04.019 CrossRefGoogle Scholar
  58. Polich, J., & Criado, J. R. (2006). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60, 172–185.CrossRefGoogle Scholar
  59. Rabbitt, P., & Rodgers, B. (1977). What does a man do after he makes an error? an analysis of response programming. Quarterly Journal of Experimental Psychology, 29, 727–743.  https://doi.org/10.1080/14640747708400645 CrossRefGoogle Scholar
  60. Schouppe, N., Braem, S., De Houwer, J., Silvetti, M., Verguts, T., Ridderinkhof, K. R., & Notebaert, W. (2015). No pain, no gain: The affective valence of congruency conditions changes following a successful response. Cognitive, Affective, & Behavioral Neuroscience, 15, 251–261.  https://doi.org/10.3758/s13415-014-0318-3 CrossRefGoogle Scholar
  61. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974.  https://doi.org/10.1037/a0020541 CrossRefGoogle Scholar
  62. Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 31–86). Amsterdam, The Netherlands: North-Holland.Google Scholar
  63. Steinhauser, M., Ernst, B., & Ibald, K. W. (2017). Isolating component processes of posterror slowing with the psychological refractory period paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 653–659.Google Scholar
  64. Steinhauser, M., & Kiesel, A. (2011). Performance monitoring and the causal attribution of errors. Cognitive, Affective, & Behavioral Neuroscience, 11, 309–320.CrossRefGoogle Scholar
  65. Steinhauser, M., & Yeung, N. (2010). Decision processes in human performance monitoring. Journal of Neuroscience, 30, 15643–15653.  https://doi.org/10.1523/JNEUROSCI.1899-10.2010 CrossRefGoogle Scholar
  66. Steinhauser, M., & Yeung, N. (2012). Error awareness as evidence accumulation: Effects of speed–accuracy trade-off on error signaling. Frontiers in Human Neuroscience, 6, 240:1–12.  https://doi.org/10.3389/fnhum.2012.00053 Google Scholar
  67. Steinhauser, R., Maier, M. E., & Steinhauser, M. (2017). Neural signatures of adaptive post-error adjustments in visual search. NeuroImage, 150, 270–278.CrossRefGoogle Scholar
  68. Talmi, D., Atkinson, R., & El-Deredy, W. (2013). The feedback-related negativity signals salience prediction errors, not reward prediction errors. Journal of Neuroscience, 33, 8264–8269.CrossRefGoogle Scholar
  69. Ticini, L. F., Schütz-Bosbach, S., Weiss, C., Casile, A., & Waszak, F. (2012). When sounds become actions: Higher-order representation of newly learned action sounds in the human motor system. Journal of Cognitive Neuroscience, 24, 464–474.CrossRefGoogle Scholar
  70. Ullsperger, M., Fischer, A. G., Nigbur, R., & Endrass, T. (2014). Neural mechanisms and temporal dynamics of performance monitoring. Trends in Cognitive Sciences, 18, 259–267.CrossRefGoogle Scholar
  71. Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214, 629–643.CrossRefGoogle Scholar
  72. Van der Borght, L., Schevernels, H., Burle, B., & Notebaert, W. (2016). Errors disrupt subsequent early attentional processes. PLoS ONE, 11, e0151843.  https://doi.org/10.1371/journal.pone.0151843 CrossRefGoogle Scholar
  73. van Veen, V., & Carter, C. S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14, 593–602.  https://doi.org/10.1162/08989290260045837 CrossRefGoogle Scholar
  74. Vidal, F., Hasbroucq, T., Grapperon, J., & Bonnet, M. (2000). Is the “error negativity” specific to errors? Biological Psychology, 51, 109–128.CrossRefGoogle Scholar
  75. Waszak, F., Cardoso-Leite, P., & Hughes, G. (2012). Action effect anticipation: Neurophysiological basis and functional consequences. Neuroscience & Biobehavioral Reviews, 36, 943–959.CrossRefGoogle Scholar
  76. Waszak, F., & Herwig, A. (2007). Effect anticipation modulates deviance processing in the brain. Brain Research, 1183, 74–82.CrossRefGoogle Scholar
  77. Welford, A. T. (1952). The “psychological refractory period” and the timing of high-speed performance—A review and a theory. British Journal of Psychology, 43, 2–19.Google Scholar
  78. Wessel, J. R. (2018). An adaptive orienting theory of error processing. Psychophysiology, 55, 1–21.Google Scholar
  79. Wessel, J. R., & Aron, A. R. (2017). On the globality of motor suppression: Unexpected events and their influence on behavior and cognition. Neuron, 93, 259–280.CrossRefGoogle Scholar
  80. Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and error: Common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32, 7528–7537.  https://doi.org/10.1523/JNEUROSCI.6352-11.2012 CrossRefGoogle Scholar
  81. Wessel, J. R., Danielmeier, C., & Ullsperger, M. (2011). Error awareness revisited: Accumulation of multimodal evidence from central and autonomic nervous systems. Journal of Cognitive Neuroscience, 23, 3021–3036.  https://doi.org/10.1162/jocn.2011.21635 CrossRefGoogle Scholar
  82. Wessel, J. R., Klein, T. A., Ott, D. V. M., & Ullsperger, M. (2014). Lesions to the prefrontal performance-monitoring network disrupt neural processing and adaptive behaviors after both errors and novelty. Cortex, 50, 45–54.CrossRefGoogle Scholar
  83. Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design (3rd ed.). New York, NY: McGraw-Hill.Google Scholar
  84. Wirth, R., Janczyk, M., & Kunde, W. (2018). Effect monitoring in dual-task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 553–571.Google Scholar
  85. Wirth, R., Pfister, R., Brandes, J., & Kunde, W. (2016). Stroking me softly: Body-related effects in effect-based action control. Attention, Perception, & Psychophysics, 78, 1755–1770.  https://doi.org/10.3758/s13414-016-1151-2 CrossRefGoogle Scholar
  86. Wirth, R., Pfister, R., & Kunde, W. (2016). Asymmetric transfer effects between cognitive and affective task disturbances. Cognition and Emotion, 30, 399–416.CrossRefGoogle Scholar
  87. Wirth, R., Steinhauser, R., Janczyk, M., Steinhauser, M., & Kunde, W. (2018). Long-term and short-term action–effect links and their impact on effect monitoring. Journal of Experimental Psychology: Human Perception and Performance. Advance online publication.  https://doi.org/10.1037/xhp0000524
  88. Wiswede, D., Münte, T. F., Goschke, T., & Rüsseler, J. (2009). Modulation of the error-related negativity by induction of short-term negative affect. Neuropsychologia, 47, 83–90.  https://doi.org/10.1016/j.neuropsychologia.2008.08.016 CrossRefGoogle Scholar
  89. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error related negativity. Psychological Review, 11, 931–959.  https://doi.org/10.1037/0033-295X.111.4.931 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Robert Steinhauser
    • 1
  • Robert Wirth
    • 2
  • Wilfried Kunde
    • 2
  • Markus Janczyk
    • 3
  • Marco Steinhauser
    • 1
  1. 1.Department of PsychologyCatholic University of Eichstätt-IngolstadtEichstättGermany
  2. 2.Department of PsychologyJulius Maximilians University of WürzburgWürzburgGermany
  3. 3.Department of PsychologyEberhard Karls UniversityTübingenGermany

Personalised recommendations