Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 18, Issue 5, pp 1000–1014 | Cite as

Attentional responses on an auditory oddball predict false memory susceptibility

  • John E. Kiat
  • Dianna Long
  • Robert F. Belli
Article

Abstract

Attention and memory are highly integrated processes. Building on prior behavioral investigations, this study assesses the link between individual differences in low-level neural attentional responding and false memory susceptibility on the misinformation effect, a paradigm in which false event memories are induced via misleading post-event information. Twenty-four subjects completed the misinformation effect paradigm after which high-density (256-channel) EEG data was collected as they engaged in an auditory oddball task. Temporal-spatial decomposition was used to extract two attention-related components from the oddball data, the P3b and Classic Slow Wave. The P3b was utilized as an index of individual differences in salient target attentional responding while the slow wave was adopted as an index of variability in task-level sustained attention. Analyses of these components show a significant negative relationship between slow-wave responses to oddball non-targets and perceptual false memory endorsements, suggestive of a link between individual differences in levels of sustained attention and false memory susceptibility. These findings provide the first demonstrated link between individual differences in basic attentional responses and false memory. These results support prior behavioral work linking attention and false memory and highlight the integration between attentional processes and real-world episodic memory.

Keywords

Episodic memory Attention False memory P300 Electroencephalography Oddball 

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

None.

References

  1. Aly, M., & Turk-Browne, N. B. (2017). How Hippocampal Memory Shapes, and Is Shaped by, Attention. In D. E. Hannula & M. C. Duff (Eds.), The hippocampus from cells to systems: Structure, connectivity, and functional contributions to memory and flexible cognition (pp. 369-403). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-50406-3_12 Google Scholar
  2. Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. Nature, 410, 366-369.  https://doi.org/10.1038/35066572 PubMedGoogle Scholar
  3. Bachiller, A., Romero, S., Molina, V., Alonso, J. F., Mananas, M. A., Poza, J., & Hornero, R. (2015). Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach. Schizophrenia Research, 169(1-3), 318-325.  https://doi.org/10.1016/j.schres.2015.09.028 PubMedGoogle Scholar
  4. Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907-918.  https://doi.org/10.1016/j.neuron.2005.07.023 PubMedGoogle Scholar
  5. Barry, R. J., Steiner, G. Z., & De Blasio, F. M. (2016). Reinstating the novelty P3. Scientific Reports, 6, Advance online publication.  https://doi.org/10.1038/srep31200
  6. Bayen, U. J., & Kuhlmann, B. G. (2011). Influences of source - Item contingency and schematic knowledge on source monitoring: Tests of the probability-matching account. Journal of Memory and Language, 64(1), 1-17.  https://doi.org/10.1016/j.jml.2010.09.001 PubMedPubMedCentralGoogle Scholar
  7. Belli, R. F., Lindsay, D. S., Gales, M. S., & McCarthy, T. T. (1994). Memory impairment and source misattribution in postevent misinformation experiments with short retention intervals. Memory & Cognition, 22(1), 40-54.  https://doi.org/10.3758/BF03202760 Google Scholar
  8. Berlad, I., & Pratt, H. (1995). P300 in response to the subject's own name. Electroencephalography and Clinical Neurophysiology, 96(5), 472-474.  https://doi.org/10.1016/0168-5597(95)00116-A PubMedGoogle Scholar
  9. Blank, H., & Launay, C. (2014). How to protect eyewitness memory against the misinformation effect: A meta-analysis of post-warning studies. Journal of Applied Research in Memory and Cognition, 3(2), 77-88.  https://doi.org/10.1016/j.jarmac.2014.03.005 Google Scholar
  10. Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., & Linden, D. E. (2004). Localizing P300 generators in visual target and distractor processing: A combined event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience, 24(42), 9353-9360.  https://doi.org/10.1523/jneurosci.1897-04.2004 PubMedGoogle Scholar
  11. Bocquillon, P., Bourriez, J. L., Palmero-Soler, E., Destee, A., Defebvre, L., Derambure, P., & Dujardin, K. (2012). Role of basal ganglia circuits in resisting interference by distracters: A swLORETA study. PLoS One, 7(3), e34239.  https://doi.org/10.1371/journal.pone.0034239 PubMedPubMedCentralGoogle Scholar
  12. Brocke, B., Tasche, K. G., & Beauducel, A. (1997). Biopsychological foundations of extraversion: Differential effort reactivity and state control. Personality and Individual Differences, 22(4), 447-458.  https://doi.org/10.1016/S0191-8869(96)00226-7 Google Scholar
  13. Brown, S. B., van der Wee, N. J., van Noorden, M. S., Giltay, E. J., & Nieuwenhuis, S. (2015). Noradrenergic and cholinergic modulation of late ERP responses to deviant stimuli. Psychophysiology, 52(12), 1620-1631.  https://doi.org/10.1111/psyp.12544 PubMedGoogle Scholar
  14. Calvillo, D. P., & Parong, J. A. (2016). The misinformation effect is unrelated to the DRM effect with and without a DRM warning. Memory, 24(3), 324-333.  https://doi.org/10.1080/09658211.2015.1005633 PubMedGoogle Scholar
  15. Chen, J., Yuan, J., Feng, T., Chen, A., Gu, B., & Li, H. (2011). Temporal features of the degree effect in self-relevance: Neural correlates. Biological Psychology, 87(2), 290-295.  https://doi.org/10.1016/j.biopsycho.2011.03.012 PubMedGoogle Scholar
  16. Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177-184.  https://doi.org/10.1016/j.conb.2007.03.005 PubMedGoogle Scholar
  17. Clark, V. P., Fannon, S., Lai, S., Benson, R., & Bauer, L. (2000). Responses to rare visual target and distractor stimuli using event-related fMRI. Journal of Neurophysiology, 83(5), 3133-3139.PubMedGoogle Scholar
  18. Cohen, J., & Polich, J. (1997). On the number of trials needed for P300. International Journal of Psychophysiology, 25(3), 249-255.  https://doi.org/10.1016/S0167-8760(96)00743-X PubMedGoogle Scholar
  19. Conroy, M. A., & Polich, J. (2007). Normative variation of P3a and P3b from a large sample: Gender, topography, and response time. Journal of Psychophysiology, 21(1), 22-32.  https://doi.org/10.1027/0269-8803.21.1.22 Google Scholar
  20. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11(8), 2383-2402.PubMedGoogle Scholar
  21. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215.  https://doi.org/10.1038/nrn755 PubMedGoogle Scholar
  22. Cortese, S., Castellanos, F. X., Eickhoff, C. R., D'Acunto, G., Masi, G., Fox, P. T., ... Eickhoff, S. B. (2016). Functional decoding and meta-analytic connectivity modeling in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 80(12), 896-904.  https://doi.org/10.1016/j.biopsych.2016.06.014
  23. Coull, J. T., Frackowiak, R. S. J., & Frith, C. D. (1998). Monitoring for target objects: Activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia, 36(12), 1325-1334.  https://doi.org/10.1016/S0028-3932(98)00035-9 PubMedGoogle Scholar
  24. Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18(5), 766-780.  https://doi.org/10.1162/jocn.2006.18.5.766 PubMedGoogle Scholar
  25. Debener, S., Makeig, S., Delorme, A., & Engel, A. K. (2005). What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cognitive Brain Research, 22(3), 309-321.  https://doi.org/10.1016/j.cogbrainres.2004.09.006 PubMedGoogle Scholar
  26. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.  https://doi.org/10.1016/j.jneumeth.2003.10.009 PubMedGoogle Scholar
  27. Dewhurst, S. A., Barry, C., Swannell, E. R., Holmes, S. J., & Bathurst, G. L. (2007). The effect of divided attention on false memory depends on how memory is tested. Memory & Cognition, 35(4), 660-667.  https://doi.org/10.3758/BF03193304 Google Scholar
  28. Dien, J. (2010a). The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data. Journal of Neuroscience Methods, 187(1), 138-145.  https://doi.org/10.1016/j.jneumeth.2009.12.009 PubMedGoogle Scholar
  29. Dien, J. (2010b). Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. Psychophysiology, 47(1), 170-183.  https://doi.org/10.1111/j.1469-8986.2009.00885.x PubMedGoogle Scholar
  30. Donchin, E. (1981). Surprise!… Surprise? Psychophysiology, 18(5), 493-513.  https://doi.org/10.1111/j.1469-8986.1981.tb01815.x PubMedGoogle Scholar
  31. Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357-427.  https://doi.org/10.1017/S0140525X00058027 Google Scholar
  32. Dywan, J., Segalowitz, S. J., & Webster, L. (1998). Source monitoring: ERP evidence for greater reactivity to nontarget information in older adults. Brain and Cognition, 36(3), 390-430.  https://doi.org/10.1006/brcg.1997.0979 PubMedGoogle Scholar
  33. Fernandes, M. A., & Moscovitch, M. (2000). Divided attention and memory: Evidence of substantial interference effects at retrieval and encoding. Journal of Experimental Psychology: General, 129(2), 155-176.  https://doi.org/10.1037/0096-3445.129.2.155 Google Scholar
  34. Fitzgerald, P. G., & Picton, T. W. (1981). Temporal and sequential probability in evoked potential studies. Canadian Journal of Psychology, 35(2), 188-200.  https://doi.org/10.1037/h0081154 PubMedGoogle Scholar
  35. Garcı́a-Larrea, L., & Cézanne-Bert, G. (1998). P3, Positive slow wave and working memory load: A study on the functional correlates of slow wave activity. Electroencephalography and Clinical Neurophysiology, 108(3), 260-273.  https://doi.org/10.1016/S0168-5597(97)00085-3 PubMedGoogle Scholar
  36. Garoff-Eaton, R. J., Slotnick, S. D., & Schacter, D. L. (2006). Not all false memories are created equal: The neural basis of false recognition. Cerebral Cortex, 16(11), 1645-1652.  https://doi.org/10.1093/cercor/bhj101 PubMedGoogle Scholar
  37. Gevins, A., Smith, M. E., Le, J., Leong, H., Bennett, J., Martin, N., ... Whitfield, S. (1996). High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalography and Clinical Neurophysiology, 98(4), 327–348.  https://doi.org/10.1016/0013-4694(96)00288-X
  38. Goff, L. M., & Roediger, H. L. (1998). Imagination inflation for action events: Repeated imaginings lead to illusory recollections. Memory & Cognition, 26(1), 20-33.  https://doi.org/10.3758/BF03211367 Google Scholar
  39. Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86(3), 141-155.  https://doi.org/10.1016/j.pneurobio.2008.09.004 PubMedGoogle Scholar
  40. Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2009). The role of the basal ganglia in learning and memory: Neuropsychological studies. Behavioural Brain Research, 199(1), 53-60.  https://doi.org/10.1016/j.bbr.2008.11.020 PubMedGoogle Scholar
  41. Gray, H. M., Ambady, N., Lowenthal, W. T., & Deldin, P. (2004). P300 as an index of attention to self-relevant stimuli. Journal of Experimental Social Psychology, 40(2), 216-224.  https://doi.org/10.1016/S0022-1031(03)00092-1 Google Scholar
  42. Higham, P. A. (1998). Believing details known to have been suggested. British Journal of Psychology, 89(2), 265.  https://doi.org/10.1111/j.2044-8295.1998.tb02684.x Google Scholar
  43. Higham, P. A., Blank, H., & Luna, K. (2017). Effects of postwarning specificity on memory performance and confidence in the eyewitness misinformation paradigm. Journal of Experimental Psychology. Applied, 23(4), 417-432.  https://doi.org/10.1037/xap0000140 PubMedGoogle Scholar
  44. Hoffman, H. G. (1997). Role of memory strength in reality monitoring decisions: Evidence from source attribution biases. Journal of Experimental Psychology. Learning, Mmory, and Cognition, 23(2), 371-383.  https://doi.org/10.1037/0278-7393.23.2.371 Google Scholar
  45. Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: Control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576-579.  https://doi.org/10.1016/j.tics.2012.10.003 PubMedPubMedCentralGoogle Scholar
  46. Inoue, Y., Inagaki, M., Gunji, A., Kokubo, N., & Kaga, M. (2007). Cerebral inhibitory functioning in patients with attention deficit/hyperactivity disorder. I. Analysis of non-target-P300 component in a visual oddball paradigm. No to Hattatsu, 39(4), 263-267.PubMedGoogle Scholar
  47. Johansson, M., Stenberg, G., Lindgren, M., & Rosén, I. (2002). Memory for perceived and imagined pictures: An event-related potential study. Neuropsychologia, 40(7), 986-1002.  https://doi.org/10.1016/S0028-3932(01)00148-8 PubMedGoogle Scholar
  48. Johnson, R., & Donchin, E. (1985). Second thoughts: Multiple P300s elicited by a single stimulus. Psychophysiology, 22(2), 182-194.  https://doi.org/10.1111/j.1469-8986.1985.tb01584.x PubMedGoogle Scholar
  49. Jonkman, L. M., Kemner, C., Verbaten, M. N., Koelega, H. S., Camfferman, G., v d Gaag, R.-J., ... van Engeland, H. (1997). Event-related potentials and performance of attention-deficit hyperactivity disorder: Children and normal controls in auditory and visual selective attention tasks. Biological Psychiatry, 41(5), 595-611.  https://doi.org/10.1016/S0006-3223(96)00073-X
  50. Kiat, J. E., & Belli, R. F. (2017). An exploratory high-density EEG investigation of the misinformation effect: Attentional and recollective differences between true and false perceptual memories. Neurobiology of Learning and Memory, 141, 199-208.  https://doi.org/10.1016/j.nlm.2017.04.007 PubMedGoogle Scholar
  51. Kiat, J.E. (2018). Assessing cross-modal target transition effects with a visual-auditory oddball. International Journal of Psychophysiology, 129, 58-66.  https://doi.org/10.1016/j.ijpsycho.2018.04.010
  52. Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B., & Liddle, P. F. (2001). An event-related fMRI study of visual and auditory oddball tasks. Journal of Psychophysiology, 15(4), 221-240.  https://doi.org/10.1027/0269-8803.15.4.221 Google Scholar
  53. Kiehl, K. A., Stevens, M. C., Laurens, K. R., Pearlson, G., Calhoun, V. D., & Liddle, P. F. (2005). An adaptive reflexive processing model of neurocognitive function: Supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. NeuroImage, 25(3), 899-915.  https://doi.org/10.1016/j.neuroimage.2004.12.035 PubMedGoogle Scholar
  54. Kim, H. (2014). Involvement of the dorsal and ventral attention networks in oddball stimulus processing: A meta-analysis. Human Brain Mapping, 35(5), 2265-2284.  https://doi.org/10.1002/hbm.22326 PubMedGoogle Scholar
  55. Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577.  https://doi.org/10.1017/S0048577201990559 PubMedGoogle Scholar
  56. Kok, A., & de Jong, H. L. (1980). The effect of repetition of infrequent familiar and unfamiliar visual patterns on components of the event-related brain potential. Biological Psychology, 10(3), 167-188.  https://doi.org/10.1016/0301-0511(80)90013-7 PubMedGoogle Scholar
  57. Lane, S. M. (2006). Dividing attention during a witnessed event increases eyewitness suggestibility. Applied Cognitive Psychology, 20(2), 199-212.  https://doi.org/10.1002/acp.1177 Google Scholar
  58. Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15(7), 1028-1038.  https://doi.org/10.1162/089892903770007416 PubMedGoogle Scholar
  59. Li, Y., Wang, L. Q., & Hu, Y. (2009). Localizing P300 generators in high-density event- related potential with fMRI. Medical Science Monitor, 15(3), 47-53.Google Scholar
  60. Lindner, I., Echterhoff, G., Davidson, P. S. R., & Brand, M. (2010). Observation inflation: Your actions become mine. Psychological Science, 21(9), 1291-1299.  https://doi.org/10.1177/0956797610379860 PubMedGoogle Scholar
  61. Loftus, E. (2003). Science and society: Our changeable memories: Legal and practical implications. Nature Reviews Neuroscience, 4(3), 231.  https://doi.org/10.1038/nrn1054 PubMedGoogle Scholar
  62. Loveless, N. E., Simpson, M., & Naatanen, R. (1987). Frontal negative and parietal positive components of the slow wave dissociated. Psychophysiology, 24(3), 340-345.  https://doi.org/10.1111/j.1469-8986.1987.tb00305.x PubMedGoogle Scholar
  63. Lütkenhöner, B. (1998). Dipole source localization by means of maximum likelihood estimation. I. Theory and simulations. Electroencephalography and Clinical Neurophysiology, 106(4), 314-321.  https://doi.org/10.1016/S0013-4694(97)00140-5 PubMedGoogle Scholar
  64. Macmillan, N. A. (2005). Detection theory : A user's guide / Neil A. MacMillan and C. Douglas Creelman (pp. 1). Mahwah, N.J.: Lawrence Erlbaum.Google Scholar
  65. MacRae, C. N., Schloerscheidt, A. M., Bodenhausen, G. V., & Milne, A. B. (2002). Creating memory illusions: Expectancy-based processing and the generation of false memories. Memory, 10(1), 63-80.  https://doi.org/10.1080/09658210143000254 PubMedGoogle Scholar
  66. Mantini, D., Corbetta, M., Perrucci, M. G., Romani, G. L., & Del Gratta, C. (2009). Large-scale brain networks account for sustained and transient activity during target detection. NeuroImage, 44(1), 265-274.  https://doi.org/10.1016/j.neuroimage.2008.08.019 PubMedGoogle Scholar
  67. McDonald, C. G., Gabbay, F. H., Rietschel, J. C., & Duncan, C. C. (2010). Evidence for a new late positive ERP component in an attended novelty oddball task. Psychophysiology, 47(5), 809-813.  https://doi.org/10.1111/j.1469-8986.2010.00986.x PubMedGoogle Scholar
  68. Mendez, M. F., Adams, N. L., & Lewandowski, K. S. (1989). Neurobehavioral changes associated with caudate lesions. Neurology, 39(3), 349-354.  https://doi.org/10.1212/WNL.39.3.349 PubMedGoogle Scholar
  69. Mesulam, M. M. (1999). Spatial attention and neglect: Parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philosophical Transactions of the Royal Society B: Biological Sciences, 354(1387), 1325-1346.  https://doi.org/10.1098/rstb.1999.0482 Google Scholar
  70. Mitchell, K. J., Johnson, M. K., & Mather, M. (2003). Source monitoring and suggestibility to misinformation: Adult age-related differences. Applied Cognitive Psychology, 17(1), 107-119.  https://doi.org/10.1002/acp.857 Google Scholar
  71. Montes, L. G. A., Ricardo-Garcell, J., De La Torre, L. B., Alcántara, H. P., García, R. B. M., Fernández-Bouzas, A., & Acosta, D. Á. (2010). Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder. Journal of Psychiatry & Neuroscience, 35(4), 238-246.  https://doi.org/10.1503/jpn.090099 Google Scholar
  72. Mulert, C., Pogarell, O., Juckel, G., Rujescu, D., Giegling, I., Rupp, D., ... Hegerl, U. (2004). The neural basis of the P300 potential. Focus on the time-course of the underlying cortical generators. European Archives of Psychiatry and Clinical Neuroscience, 254(3), 190-198.  https://doi.org/10.1007/s00406-004-0469-2
  73. Murphy, G., & Greene, C. M. (2016). Perceptual load affects eyewitness accuracy and susceptibility to leading questions. Frontiers in Psychology, 7, 1322.  https://doi.org/10.3389/fpsyg.2016.01322 PubMedPubMedCentralGoogle Scholar
  74. Okado, Y., & Stark, C. E. L. (2005). Neural activity during encoding predicts false memories created by misinformation. Learning & Memory, 12(1), 3-11.  https://doi.org/10.1101/lm.87605 Google Scholar
  75. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.  https://doi.org/10.1016/0028-3932(71)90067-4 PubMedGoogle Scholar
  76. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 1-9.  https://doi.org/10.1155/2011/156869
  77. Palmer, M. A., Brewer, N., McKinnon, A. C., & Weber, N. (2010). Phenomenological reports diagnose accuracy of eyewitness identification decisions. Acta Psychologica, 133(2), 137-145.  https://doi.org/10.1016/j.actpsy.2009.11.002 PubMedGoogle Scholar
  78. Perez-Mata, M. N., Read, J. D., & Diges, M. (2002). Effects of divided attention and word concreteness on correct recall and false memory reports. Memory, 10(3), 161-177.  https://doi.org/10.1080/09658210143000308 PubMedGoogle Scholar
  79. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89.  https://doi.org/10.1146/annurev-neuro-062111-150525 PubMedPubMedCentralGoogle Scholar
  80. Polak, M., Dukała, K., Szpitalak, M., & Polczyk, R. (2016). Toward a non-memory misinformation effect: Accessing the original source does not prevent yielding to misinformation. Current Psychology, 35(1), 1-12.  https://doi.org/10.1007/s12144-015-9352-8 Google Scholar
  81. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.  https://doi.org/10.1016/j.clinph.2007.04.019 PubMedPubMedCentralGoogle Scholar
  82. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25-42.  https://doi.org/10.1146/annurev.ne.13.030190.000325 PubMedGoogle Scholar
  83. Ritter, W., & Ruchkin, D. S. (1992). A review of event-related potential components discovered in the context of studying P3. In D. Friedman, G. E. Bruder, D. Friedman & G. E. Bruder (Eds.), Psychophysiology and experimental psychopathology: A tribute to Samuel Sutton. (Vol. 658, pp. 1-32). New York, NY, US: New York Academy of Sciences.  https://doi.org/10.1111/j.1749-6632.1992.tb22837.x Google Scholar
  84. Rivardo, M. G., Brown, K. A., Rodgers, A. D., Maurer, S. V., Camaione, T. C., Minjock, R. M., & Gowen, G. M. (2011). Integrating inattentional blindness and eyewitness memory. North American Journal of Psychology, 13(3), 519-538.Google Scholar
  85. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). 'Oops!': Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747-758.PubMedGoogle Scholar
  86. Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 803-814.  https://doi.org/10.1037/0278-7393.21.4.803 Google Scholar
  87. Rosenfeld, J. P., Bhat, K., Miltenberger, A., & Johnson, M. (1992). Event-related potentials in the dual task paradigm: P300 discriminates engaging and non-engaging films when film-viewing is the primary task. International Journal of Psychophysiology, 12(3), 221-232.PubMedGoogle Scholar
  88. Rosler, F., & Heil, M. (1991). Toward a functional categorization of slow waves: Taking into account past and future events. Psychophysiology, 28(3), 344-358.  https://doi.org/10.1111/j.1469-8986.1991.tb02205.x PubMedGoogle Scholar
  89. Rozenkrants, B., & Polich, J. (2008). Affective ERP processing in a visual oddball task: Arousal, valence, and gender. Clinical Neurophysiology, 119(10), 2260-2265.  https://doi.org/10.1016/j.clinph.2008.07.213 PubMedPubMedCentralGoogle Scholar
  90. Ruchkin, D. S., & Sutton, S. (1983) Positive slow wave and P300: Association and disassociation. Advances in Psychology, 10, 233-250.  https://doi.org/10.1016/S0166-4115(08)62042-7 Google Scholar
  91. Ruchkin, D. S., Sutton, S., Kietzman, M. L., & Silver, K. (1980). Slow wave and P300 in signal detection. Electroencephalography and Clinical Neurophysiology, 50(1), 35-47.  https://doi.org/10.1016/0013-4694(80)90321-1 PubMedGoogle Scholar
  92. Rummel, J., Smeekens, B. A., & Kane, M. J. (2017). Dealing with prospective memory demands while performing an ongoing task: Shared processing, increased on-task focus, or both? Journal of Experimental Psychology. Learning, Memory, and Cognition, 43(7), 1047-1062.  https://doi.org/10.1037/xlm0000359 PubMedGoogle Scholar
  93. Rushby, J. A., Barry, R. J., & Doherty, R. J. (2005). Separation of the components of the late positive complex in an ERP dishabituation paradigm. Clinical Neurophysiology, 116(10), 2363-2380.  https://doi.org/10.1016/j.clinph.2005.06.008 PubMedGoogle Scholar
  94. Russo, P. M., De Pascalis, V., Varriale, V., & Barratt, E. S. (2008). Impulsivity, intelligence and P300 wave: An empirical study. International Journal of Psychophysiology, 69(2), 112-118.  https://doi.org/10.1016/j.ijpsycho.2008.03.008 PubMedGoogle Scholar
  95. Sauer, J., & Hope, L. (2016). The effects of divided attention at study and reporting procedure on regulation and monitoring for episodic recall. Acta Psychologica, 169, 143-156.  https://doi.org/10.1016/j.actpsy.2016.05.015 PubMedGoogle Scholar
  96. Schooler, J. W., Gerhard, D., & Loftus, E. F. (1986). Qualities of the unreal. Journal of Experimental Psychology. Learning, Memory, and Cognition, 12(2), 171-181.  https://doi.org/10.1037/0278-7393.12 PubMedGoogle Scholar
  97. Schrimsher, G. W., Billingsley, R. L., Jackson, E. F., & Moore, B. D., 3rd. (2002). Caudate nucleus volume asymmetry predicts attention-deficit hyperactivity disorder (ADHD) symptomatology in children. Journal of Child Neurology, 17(12), 877-884.  https://doi.org/10.1177/08830738020170122001 PubMedGoogle Scholar
  98. Skinner, E. I., & Fernandes, M. A. (2009). Illusory recollection in older adults and younger adults under divided attention. Psychology and Aging, 24(1), 211-216.  https://doi.org/10.1037/a0014177 PubMedGoogle Scholar
  99. Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 38(2), 343-358.  https://doi.org/10.1111/1469-8986.3820343 PubMedGoogle Scholar
  100. Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387-401.  https://doi.org/10.1016/0013-4694(75)90263-1 PubMedGoogle Scholar
  101. Steiner, G. Z., Barry, R. J., & Gonsalvez, C. J. (2013). Can working memory predict target-to-target interval effects in the P300? International Journal of Psychophysiology, 89(3), 399-408.  https://doi.org/10.1016/j.ijpsycho.2013.07.011 PubMedGoogle Scholar
  102. Stelmack, R. M., & Sculthorpe, L. D. (2008). Mental ability and individual differences in P300 and mismatch negativity. International Journal of Psychophysiology, 69(3), 158.  https://doi.org/10.1016/j.ijpsycho.2008.05.402 Google Scholar
  103. Stevens, M. C., Calhoun, V. D., & Kiehl, K. A. (2005). fMRI in an oddball task: Effects of target-to-target interval. Psychophysiology, 42(6), 636-642.  https://doi.org/10.1111/j.1469-8986.2005.00368.x PubMedGoogle Scholar
  104. Stokes, M. G., Atherton, K., Patai, E. Z., & Nobre, A. C. (2012). Long-term memory prepares neural activity for perception. Proceedings of the National Academy of Sciences, 109(6), E360–E367.  https://doi.org/10.1073/pnas.1108555108 Google Scholar
  105. Strobel, A., Debener, S., Sorger, B., Peters, J. C., Kranczioch, C., Hoechstetter, K., ... Goebel, R. (2008). Novelty and target processing during an auditory novelty oddball: A simultaneous event-related potential and functional magnetic resonance imaging study. NeuroImage, 40(2), 869-883.  https://doi.org/10.1016/j.neuroimage.2007.10.065
  106. Struber, D., & Polich, J. (2002). P300 and slow wave from oddball and single-stimulus visual tasks: Inter-stimulus interval effects. International Journal of Psychophysiology, 45(3), 187-196.  https://doi.org/10.1016/S0167-8760(02)00071-5 PubMedGoogle Scholar
  107. Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187-1188.  https://doi.org/10.1126/science.150.3700.1187 PubMedGoogle Scholar
  108. Tousignant, J. P., Hall, D., & Loftus, E. F. (1986). Discrepancy detection and vulnerability to misleading postevent information. Memory & Cognition, 14(4), 329-338.  https://doi.org/10.3758/bf03202511 Google Scholar
  109. Uncapher, M. R., & Rugg, M. D. (2005). Effects of divided attention on fMRI correlates of memory encoding. Journal of Cognitive Neuroscience, 17(12), 1923-1935.  https://doi.org/10.1162/089892905775008616 PubMedGoogle Scholar
  110. Unsworth, N., & Robison, M. K. (2016). The influence of lapses of attention on working memory capacity. Memory & Cognition, 44(2), 188-196.  https://doi.org/10.3758/s13421-015-0560-0 Google Scholar
  111. Volpe, U., Mucci, A., Bucci, P., Merlotti, E., Galderisi, S., & Maj, M. (2007). The cortical generators of P3a and P3b: A LORETA study. Brain Research Bulletin, 73(4-6), 220-230.  https://doi.org/10.1016/j.brainresbull.2007.03.003 PubMedGoogle Scholar
  112. Walz, J. M., Goldman, R. I., Carapezza, M., Muraskin, J., Brown, T. R., & Sajda, P. (2013). Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. Journal of Neuroscience, 33(49), 1912-1922.  https://doi.org/10.1523/jneurosci.2649-13.2013 Google Scholar
  113. Whitmer, A. J., & Gotlib, I. H. (2013). An attentional scope model of rumination. Psychological Bulletin, 139(5), 1036-1061.  https://doi.org/10.1037/a0030923 PubMedGoogle Scholar
  114. Williams, L. M., Simms, E., Clark, C. R., Paul, R. H., Rowe, D., & Gordon, E. (2005). The test-retest reliability of a standardized neurocognitive and neurophysiological test battery: "Neuromarker". International Journal of Neuroscience, 115(12), 1605-1630.  https://doi.org/10.1080/00207450590958475 PubMedGoogle Scholar
  115. Wronka, E., Kaiser, J., & Coenen, A. M. (2012). Neural generators of the auditory evoked potential components P3a and P3b. Acta Neurobiologiae Experimentalis, 72(1), 51-64.PubMedGoogle Scholar
  116. Yurgil, K. A., & Golob, E. J. (2013). Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity. Psychophysiology, 50(12), 1263-1274.  https://doi.org/10.1111/psyp.12140 PubMedPubMedCentralGoogle Scholar
  117. Zaragoza, M. S., & Lane, S. M. (1998). Processing resources and eyewitness suggestibility. Legal and Criminological Psychology, 3(2), 305-320.  https://doi.org/10.1111/j.2044-8333.1998.tb00368.x Google Scholar
  118. Zhao, W., & Li, A. X. (2012). A generalized approach to estimating sample sizes. Los Angeles, CA: SAS Institute Inc.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations