Advertisement

Facing temptation: The neural correlates of gambling availability during sports picture exposure

  • Damien Brevers
  • Sarah C. Herremans
  • Qinghua He
  • Marie-Anne Vanderhasselt
  • Mathieu Petieau
  • Dimitri Verdonck
  • Tasha Poppa
  • Sara De Witte
  • Charles Kornreich
  • Antoine Bechara
  • Chris Baeken
Article

Abstract

Nowadays, sports betting has become increasingly available and easy to engage in. Here we examined the neural responses to stimuli that represent sporting events available for betting as compared to sporting events without a gambling opportunity. We used a cue exposure task in which football (soccer) fans (N = 42) viewed cues depicting scheduled football games that would occur shortly after the scanning session. In the “betting” condition, participants were instructed to choose, at the end of each block, the game (and the team) they wanted to bet on. In the “watching” condition, participants chose the game they would prefer to watch. After the scanning session, participants completed posttask rating questionnaires assessing, for each cue, their level of confidence about the team they believed would win and how much they would enjoy watching the game. We found that stimuli representing sport events available for betting elicited higher fronto-striatal activation, as well as higher insular cortex activity and functional connectivity, than sport events without a gambling opportunity. Moreover, games rated with more confidence towards the winning team resulted in greater brain activations within regions involved in affective decision-making (ventromedial prefrontal cortex), cognitive inhibitory control (medial and superior frontal gyri) and reward processing (ventral and dorsal striatum). Altogether, these novel findings offer a sensible simulation of how the high availability of sports betting in today’s environment impacts on the reward and cognitive control systems. Future studies are needed to extend the present findings to a sample of football fans that includes a samilar proportion of female and male participants.

Keywords

Sports betting fMRI Reward availability Functional connectivity Insular cortex 

References

  1. Addicott, M. A., Sweitzer, M. M., Froeliger, B., Rose, J. E., & McClernon, F. J. (2015). Increased functional connectivity in an insula-based network is associated with improved smoking cessation outcomes. Neuropsychopharmacology, 40, 2648–2656.  https://doi.org/10.1038/npp.2015.114 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007a). Non-linear optimisation (FMRIB Technical Report TR07JA1). Oxford, UK: FMRIB Analysis Group. Retrieved from www.fmrib.ox.ac.uk/datasets/techrep Google Scholar
  3. Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007b). Non-linear registration, aka spatial normalisation (FMRIB Technical Report TR07JA2). Oxford, UK: FMRIB Analysis Group. Retrieved from www.fmrib.ox.ac.uk/datasets/techrep
  4. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8, 1458–1463.  https://doi.org/10.1038/nn1584 CrossRefPubMedGoogle Scholar
  5. Bickel, W. K., Miller, M. L., Yi, R., Kowal, B. P., Lindquist, D. M., & Pitcock, J. A. (2007). Behavioral and neuroeconomics of drug addiction: Competing neural systems and temporal discounting processes. Drug and Alcohol Dependence, 90, S85–S91.  https://doi.org/10.1016/j.drugalcdep.2006.09.016 CrossRefPubMedGoogle Scholar
  6. Bierzynska, M., Bielecki, M., Marchewka, A., Debowska, W., Duszyk, A., Zajkowski, W., … Kossut, M. (2016). Effect of frustration on brain activation pattern in subjects with different temperament. Frontiers in Psychology, 6, 1989.  https://doi.org/10.3389/fpsyg.2015.01989 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blechert, J., Klackl, J., Miedl, S. F., & Wilhelm, F. H. (2016). To eat or not to eat: Effects of food availability on reward system activity during food picture viewing. Appetite, 99, 254–261.  https://doi.org/10.1016/j.appet.2016.01.006 CrossRefPubMedGoogle Scholar
  8. Brevers, D., Bechara, A., Kilts, C. D., Antoniali, V., Bruylant, P., Verbanck P., ... Noël, X. (2017). Competing motivations: Proactive response inhibition toward addiction-related stimuli in quitting-motivated individuals. Journal of Gambling Studies. Advance online publication.  https://doi.org/10.1007/s10899-017-9722-2
  9. Burke, C. J., & Tobler, P. N. (2011). Reward skewness coding in the insula independent of probability and loss. Journal of Neurophysiology, 106, 2415–2422.  https://doi.org/10.1152/jn.00471.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2013). Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cerebral Cortex, 23, 739–749.  https://doi.org/10.1093/cercor/bhs065 CrossRefPubMedGoogle Scholar
  11. Craig, A. D. B. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.  https://doi.org/10.1038/nrn2555 CrossRefPubMedGoogle Scholar
  12. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J., & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58, 787–795.  https://doi.org/10.1016/j.biopsych.2005.04.037 CrossRefPubMedGoogle Scholar
  13. Dalgleish, T., Walsh, N. D., Mobbs, D., Schweizer, S., van Harmelen, A.-L., Dunn, B.,… Stretton, J. (2017). Social pain and social gain in the adolescent brain: A common neural circuitry underlying both positive and negative social evaluation. Scientific Reports, 7, 42010.  https://doi.org/10.1038/srep42010 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex, 21, 1498–1506.  https://doi.org/10.1093/cercor/bhq186 CrossRefPubMedGoogle Scholar
  15. Denny, B. T., Fan, J., Liu, X., Guerreri, S., Mayson, S. J., Rimsky, L., … Koenigsberg, H. W. (2014). Insulaamygdala functional connectivity is correlated with habituation to repeated negative images. Social Cognitive and Affective Neuroscience, 9(11), 1660–1667.  https://doi.org/10.1093/scan/nst160 CrossRefPubMedGoogle Scholar
  16. Di, X., Huang, J., & Biswal, B. B. (2017). Task modulated brain connectivity of the amygdala: A meta-analysis of psychophysiological interactions. Brain Structure and Function, 222, 619–634.  https://doi.org/10.1007/s00429-016-1239-4 CrossRefPubMedGoogle Scholar
  17. Droutman, V., Bechara, A., & Read, S. J. (2015a). Roles of the different sub-regions of the insular cortex in various phases of the decision-making process. Frontiers in Behavioral Neuroscience, 9, 309.  https://doi.org/10.3389/fnbeh.2015.00309 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Droutman, V., Read, S. J., & Bechara, A. (2015b). Revisiting the role of the insula in addiction. Trends in Cognitive Sciences, 19, 414–420.  https://doi.org/10.1016/j.tics.2015.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dwyer, B., Shapiro, S. L., & Drayer, J. (2017). Daily fantasy football and self-reported problem behavior in the United States. Journal of Gambling Studies. Advance online publication.  https://doi.org/10.1007/s10899-017-9720-4
  20. Dwyer, B., & Weiner, J. (2018). Daily grind: A comparison of causality orientations, emotions, and fantasy sport participation. Journal of Gambling Studies, 34, 1–20.  https://doi.org/10.1007/s10899-017-9684-4 CrossRefPubMedGoogle Scholar
  21. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 1481–1489.  https://doi.org/10.1038/nn1579 CrossRefPubMedGoogle Scholar
  22. Ferris, J., & Wynne, H. (2001). The Canadian Problem Gambling Index: Final report. Ottawa, ON: Canadian Centre on Substance Abuse.Google Scholar
  23. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229.  https://doi.org/10.1006/nimg.1997.0291 CrossRefPubMedGoogle Scholar
  24. Goudriaan, A. E., de Ruiter, M. B., van den Brink, W., Oosterlaan, J., & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: An fMRI study. Addiction Biology, 15, 491–503.  https://doi.org/10.1111/j.1369-1600.2010.00242.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grosenick, L., Greer, S., & Knutson, B. (2008). Interpretable classifiers for FMRI improve prediction of purchases. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16, 539–548.  https://doi.org/10.1109/TNSRE.2008.926701 CrossRefPubMedGoogle Scholar
  26. Hayashi, T., Ko, J. H., Strafella, A. P., & Dagher, A. (2013). Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proceedings of the National Academy of Sciences, 110, 4422–4427.  https://doi.org/10.1073/pnas.1212185110 CrossRefGoogle Scholar
  27. Hing, N., Li, E., Vitartas, P., & Russell, A. M. T. (2017a). On the spur of the moment: Intrinsic predictors of impulse sports betting. Journal of Gambling Studies. Advance online publication.  https://doi.org/10.1007/s10899-017-9719-x
  28. Hing, N., Russell, A. M., & Browne, M. (2017b). Risk factors for gambling problems on online electronic gaming machines, race betting and sports betting. Frontiers in Psychology, 8, 779.  https://doi.org/10.3389/fpsyg.2017.00779 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hing, N., Russell, A. M. T., Lamont, M., & Vitartas, P. (2017c). Bet anywhere, anytime: An analysis of Internet sports bettors’ responses to gambling promotions during sports broadcasts by problem gambling severity. Journal of Gambling Studies, 33, 1051–1065.  https://doi.org/10.1007/s10899-017-9671-9 CrossRefPubMedGoogle Scholar
  30. James, R. J. E., O’Malley, C., & Tunney, R. J. (2016). Understanding the psychology of mobile gambling: A behavioural synthesis. British Journal of Psychology, 108, 608–625.  https://doi.org/10.1111/bjop.12226 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Janes, A. C., Pizzagalli, D. A., Richardt, S., Frederick, B. D., Chuzi, S., Pachas, G., … Kaufman, M. J. (2010). Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biological Psychiatry, 67, 722–729.  https://doi.org/10.1016/j.biopsych.2009.12.034 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jasinska, A. J., Stein, E. A., Kaiser, J., Naumer, M. J., & Yalachkov, Y. (2014). Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neuroscience & Biobehavioral Reviews, 38, 1–16.  https://doi.org/10.1016/j.neubiorev.2013.10.013
  33. Jenkinson, M. (2004). Improving the registration of B0-disorted EPI images using calculated cost function weights. Paper presented at Tenth International Conference on Functional Mapping of the Human Brain, Budapest, Hungary.Google Scholar
  34. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841.  https://doi.org/10.1006/nimg.2002.1132 CrossRefPubMedGoogle Scholar
  35. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5, 143–156.CrossRefPubMedGoogle Scholar
  36. Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53, 147–156.  https://doi.org/10.1016/j.neuron.2006.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., & Ochsner, K. N. (2010). Prefrontal-striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences, 107, 14811–14816.  https://doi.org/10.1073/pnas.1007779107 CrossRefGoogle Scholar
  38. Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97–129.  https://doi.org/10.1016/S0893-133X(00)00195-0 CrossRefPubMedGoogle Scholar
  39. Lebreton, M., Abitbol, R., Daunizeau, J., & Pessiglione, M. (2015). Automatic integration of confidence in the brain valuation signal. Nature Neuroscience, 18, 1159–1167.  https://doi.org/10.1038/nn.4064 CrossRefPubMedGoogle Scholar
  40. Limbrick-Oldfield, E. H., Mick, I., Cocks, R. E., McGonigle, J., Sharman, S. P., Goldstone, A. P.,… Clark, L. (2017). Neural substrates of cue reactivity and craving in gambling disorder. Translational Psychiatry, 7, e992.  https://doi.org/10.1038/tp.2016.256 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Makino, Y., Yokosawa, K., Takeda, Y., & Kumada, T. (2004). Visual search and memory search engage extensive overlapping cerebral cortices: An fMRI study. NeuroImage, 23, 525–533.CrossRefPubMedGoogle Scholar
  42. McBride, D., Barrett, S. P., Kelly, J. T., Aw, A., & Dagher, A. (2006). Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: An fMRI study. Neuropsychopharmacology, 31, 2728–2738.  https://doi.org/10.1038/sj.npp.1301075 CrossRefPubMedGoogle Scholar
  43. McClure, S. M., & Bickel, W. K. (2014). A dual-systems perspective on addiction: Contributions from neuroimaging and cognitive training. Annals of the New York Academy of Sciences, 1327, 62–78.  https://doi.org/10.1111/nyas.12561 CrossRefPubMedPubMedCentralGoogle Scholar
  44. McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. NeuroImage, 61, 1277–1286.  https://doi.org/10.1016/j.neuroimage.2012.03.068 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214, 655–667.  https://doi.org/10.1007/s00429-010-0262-0 CrossRefPubMedGoogle Scholar
  46. Metcalfe, J., & Mischel, W. (1999). A hot/cool-system analysis of delay of gratification: Dynamics of willpower. Psychological Review, 106, 3–19.  https://doi.org/10.1037/0033-295X.106.1.3 CrossRefPubMedGoogle Scholar
  47. Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: The insula. Trends in Neurosciences, 32, 56–67.  https://doi.org/10.1016/j.tins.2008.09.009 CrossRefPubMedGoogle Scholar
  48. Naqvi, N. H., & Bechara, A. (2010). The insula and drug addiction: An interoceptive view of pleasure, urges, and decision-making. Brain Structure and Function, 214, 435–450.  https://doi.org/10.1007/s00429-010-0268-7 CrossRefPubMedGoogle Scholar
  49. Naqvi, N. H., Gaznick, N., Tranel, D., & Bechara, A. (2014). The insula: A critical neural substrate for craving and drug seeking under conflict and risk. Annals of the New York Academy of Sciences, 1316, 53–70.  https://doi.org/10.1111/nyas.12415 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nelson, S. M., Dosenbach, N. U. F., Cohen, A. L., Wheeler, M. E., Schlaggar, B. L., & Petersen, S. E. (2010). Role of the anterior insula in task-level control and focal attention. Brain Structure and Function, 214(5–6), 669–680.  https://doi.org/10.1007/s00429-010-0260-2 CrossRefPubMedGoogle Scholar
  51. Noël, X., Brevers, D., & Bechara, A. (2013a). A neurocognitive approach to understanding the neurobiology of addiction. Current Opinion in Neurobiology, 23, 632–638. : https://doi.org/10.1016/j.conb.2013.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Noël, X., Brevers, D., & Bechara, A. (2013b). A triadic neurocognitive approach to addiction for clinical interventions. Frontiers in Psychiatry, 4, 179.  https://doi.org/10.3389/fpsyt.2013.00179 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Paulus, M. P., & Frank, L. R. (2006). Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects. NeuroImage, 30, 668–677.  https://doi.org/10.1016/j.neuroimage.2005.09.061 CrossRefPubMedGoogle Scholar
  54. Paulus, M. P., & Stewart, J. L. (2014). Interoception and drug addiction. Neuropharmacology, 76(Part B),342–350.  https://doi.org/10.1016/j.neuropharm.2013.07.002 CrossRefPubMedGoogle Scholar
  55. Roland, P. E., & Gulyás, B. (1995). Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: Functional anatomy by positron emission tomography. Cerebral Cortex, 5, 79–93.  https://doi.org/10.1093/cercor/5.1.79 CrossRefPubMedGoogle Scholar
  56. Saunders, J. B., Aasland, O. G., Babor, T. F., de la Fuente, J. R., & Grant, M. (1993). Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption—II. Addiction, 88, 791–804.CrossRefPubMedGoogle Scholar
  57. Servos, P., Osu, R., Santi, A., & Kawato, M. (2002). The neural substrates of biological motion perception: An fMRI study. Cerebral Cortex, 12, 772–782.  https://doi.org/10.1093/cercor/12.7.772 CrossRefPubMedGoogle Scholar
  58. Sescousse, G., Barbalat, G., Domenech, P., & Dreher, J.-C. (2013). Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain, 136, 2527–2538.  https://doi.org/10.1093/brain/awt126 CrossRefPubMedGoogle Scholar
  59. Shaffer, H. J., LaPlante, D. A., LaBrie, R. A., Kidman, R. C., Donato, A. N., & Stanton, M. V. (2004). Toward a syndrome model of addiction: Multiple expressions, common etiology. Harvard Review of Psychiatry, 12, 367–374.  https://doi.org/10.1080/10673220490905705 CrossRefPubMedGoogle Scholar
  60. Smith, B. W., Mitchell, D. G. V., Hardin, M. G., Jazbec, S., Fridberg, D., Blair, R. J. R., & Ernst, M. (2009). Neural substrates of reward magnitude, probability, and risk during a wheel of fortune decision-making task. NeuroImage, 44, 600–609.  https://doi.org/10.1016/j.neuroimage.2008.08.016 CrossRefPubMedGoogle Scholar
  61. Smith, D. V., Gseir, M., Speer, M. E., & Delgado, M. R. (2016). Toward a cumulative science of functional integration: A meta-analysis of psychophysiological interactions. Human Brain Mapping, 37, 2904–2917.  https://doi.org/10.1002/hbm.23216 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sugiura, M., Shah, N. J., Zilles, K., & Fink, G. R. (2005). Cortical representations of personally familiar objects and places: Functional organization of the human posterior cingulate cortex. Journal of Cognitive Neuroscience, 17, 183–198.CrossRefPubMedGoogle Scholar
  63. Symmonds, M., Wright, N. D., Bach, D. R., & Dolan, R. J. (2011). Deconstructing risk: Separable encoding of variance and skewness in the brain. NeuroImage, 58, 1139–1149.  https://doi.org/10.1016/j.neuroimage.2011.06.087 CrossRefPubMedPubMedCentralGoogle Scholar
  64. van Holst, R. J., van Holstein, M., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2012a). Response inhibition during cue reactivity in problem gamblers: An fMRI study. PLoS ONE, 7, e30909.  https://doi.org/10.1371/journal.pone.0030909 CrossRefPubMedPubMedCentralGoogle Scholar
  65. van Holst, R. J., Veltman, D. J., Büchel, C., van den Brink, W., & Goudriaan, A. E. (2012b). Distorted expectancy coding in problem gambling: Is the addictive in the anticipation? Biological Psychiatry, 71, 741–748.  https://doi.org/10.1016/j.biopsych.2011.12.030 CrossRefPubMedGoogle Scholar
  66. Verdejo-Garcia, A., Clark, L., & Dunn, B. D. (2012). The role of interoception in addiction: A critical review. Neuroscience & Biobehavioral Reviews, 36, 1857–1869.  https://doi.org/10.1016/j.neubiorev.2012.05.007 CrossRefGoogle Scholar
  67. Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: Insights from imaging studies. Journal of Clinical Investigation, 111, 1444–1451.  https://doi.org/10.1172/JCI18533 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wager, T. D., & Barrett, L. F. (2004). From affect to control: Functional specialization of the insula in motivation and regulation. Unpublished paper. Retrieved from www.affective-science.org/pubs/2004/Wager_Edfest_submitted_copy.pdf
  69. Weiss, N. H., Sullivan, T. P., & Tull, M. T. (2015). Explicating the role of emotion dysregulation in risky behaviors: A review and synthesis of the literature with directions for future research and clinical practice. Current Opinion in Psychology, 3, 22–29.  https://doi.org/10.1016/j.copsyc.2015.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wilcox, C. E., Teshiba, T. M., Merideth, F., Ling, J., & Mayer, A. R. (2011). Enhanced cue reactivity and fronto-striatal functional connectivity in cocaine use disorders. Drug and Alcohol Dependence, 115, 137–144.  https://doi.org/10.1016/j.drugalcdep.2011.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wilson, S. J., & Sayette, M. A. (2015). Neuroimaging craving: Urge intensity matters. Addiction, 110, 195–203.  https://doi.org/10.1111/add.12676 CrossRefPubMedGoogle Scholar
  72. Wilson, S. J., Sayette, M. A., Delgado, M. R., & Fiez, J. A. (2005). Instructed smoking expectancy modulates cue-elicited neural activity: A preliminary study. Nicotine and Tobacco Research, 7, 637–645.  https://doi.org/10.1080/14622200500185520 CrossRefPubMedGoogle Scholar
  73. Wu, C. C., Bossaerts, P., & Knutson, B. (2011). The affective impact of financial skewness on neural activity and choice. PLoS ONE, 6, e16838.  https://doi.org/10.1371/journal.pone.0016838 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wu, C. C., Sacchet, M. D., & Knutson, B. (2012). Toward an affective neuroscience account of financial risk taking. Frontiers in Neuroscience, 6, 159.  https://doi.org/10.3389/fnins.2012.00159 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Xue, G., Lu, Z., Levin, I. P., & Bechara, A. (2010). The impact of prior risk experiences on subsequent risky decision-making: The role of the insula. NeuroImage, 50, 709–716.  https://doi.org/10.1016/j.neuroimage.2009.12.097 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yalachkov, Y., Kaiser, J., & Naumer, M. J. (2012). Functional neuroimaging studies in addiction: Multisensory drug stimuli and neural cue reactivity. Neuroscience & Biobehavioral Reviews, 36, 825–835.  https://doi.org/10.1016/j.neubiorev.2011.12.004 CrossRefGoogle Scholar
  77. Yonelinas, A. P., Otten, L. J., Shaw, K. N., & Rugg, M. D. (2005). Separating the brain regions involved in recollection and familiarity in recognition memory. Journal of Neuroscience, 25, 3002–3008.  https://doi.org/10.1523/JNEUROSCI.5295-04.2005 CrossRefPubMedGoogle Scholar
  78. Yu, R., Mobbs, D., Seymour, B., Rowe, J. B., & Calder, A. J. (2014). The neural signature of escalating frustration in humans. Cortex, 54, 165–178.  https://doi.org/10.1016/j.cortex.2014.02.013 CrossRefPubMedGoogle Scholar
  79. Zelle, S. L., Gates, K. M., Fiez, J. A., Sayette, M. A., & Wilson, S. J. (2017). The first day is always the hardest: Functional connectivity during cue exposure and the ability to resist smoking in the initial hours of a quit attempt. NeuroImage, 151, 24–32.  https://doi.org/10.1016/j.neuroimage.2016.03.015 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Damien Brevers
    • 1
    • 2
  • Sarah C. Herremans
    • 3
  • Qinghua He
    • 4
  • Marie-Anne Vanderhasselt
    • 3
    • 5
  • Mathieu Petieau
    • 6
  • Dimitri Verdonck
    • 6
  • Tasha Poppa
    • 7
  • Sara De Witte
    • 3
  • Charles Kornreich
    • 1
  • Antoine Bechara
    • 7
  • Chris Baeken
    • 3
  1. 1.Laboratory of Psychological Medicine and Addictionology, Faculty of Medicine, Brugmann campus, CHU-BrugmannUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Research in Psychology Applied to Motor Learning, Faculty of Motor Sciences, Erasme CampusUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Department of Psychiatry and Medical PsychologyUniversitair Ziekenhuis GentGhentBelgium
  4. 4.Faculty of PsychologySouthwest UniversityChongqingChina
  5. 5.Department of Experimental Clinical and Health Psychology, Faculty of Psychology and Educational SciencesGhent UniversityGhentBelgium
  6. 6.Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Erasme CampusUniversité Libre de BruxellesBrusselsBelgium
  7. 7.Department of Psychology, and Brain and Creativity InstituteUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations