Advertisement

Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control

  • Rico FischerEmail author
  • Carlos Ventura-Bort
  • Alfons Hamm
  • Mathias Weymar
Article
  • 392 Downloads

Abstract

Response conflicts play a prominent role in the flexible adaptation of behavior as they represent context-signals that indicate the necessity for the recruitment of cognitive control. Previous studies have highlighted the functional roles of the affectively aversive and arousing quality of the conflict signal in triggering the adaptation process. To further test this potential link with arousal, participants performed a response conflict task in two separate sessions with either transcutaneous vagus nerve stimulation (tVNS), which is assumed to activate the locus coeruleus-noradrenaline (LC-NE) system, or with neutral sham stimulation. In both sessions the N2 and P3 event-related potentials (ERP) were assessed. In line with previous findings, conflict interference, the N2 and P3 amplitude were reduced after conflict. Most importantly, this adaptation to conflict was enhanced under tVNS compared to sham stimulation for conflict interference and the N2 amplitude. No effect of tVNS on the P3 component was found. These findings suggest that tVNS increases behavioral and electrophysiological markers of adaptation to conflict. Results are discussed in the context of the potentially underlying LC-NE and other neuromodulatory (e.g., GABA) systems. The present findings add important pieces to the understanding of the neurophysiological mechanisms of conflict-triggered adjustment of cognitive control.

Keywords

Conflict adaptation Cognitive control Transcutaneous vagus nerve stimulation tVNS ERP N2 

References

  1. Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive control in associative learning. Psychol Bull, 142(7), 693-728. doi: https://doi.org/10.1037/bul0000047 PubMedCrossRefGoogle Scholar
  2. Albert, J., Lopez-Martin, S., Hinojosa, J. A., & Carretie, L. (2013). Spatiotemporal characterization of response inhibition. Neuroimage, 76(1), 272-281. doi: https://doi.org/10.1016/j.neuroimage.2013.03.011 PubMedCrossRefGoogle Scholar
  3. Arnsten, A. F. T., & Goldman-Rakic, P. S. (1984). Selective prefrontal cortical projections to the region of the locus Coeruleus and Raphe Nuclei in the Rhesus-monkey. Brain Research, 306(1-2), 9-18. doi: https://doi.org/10.1016/0006-8993(84)90351-2 PubMedCrossRefGoogle Scholar
  4. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450. doi: https://doi.org/10.1146/annurev.neuro.28.061604.135709 PubMedCrossRefGoogle Scholar
  5. Ben-Menachem, E., Hamberger, A., Hedner, T., Hammond, E. J., Uthman, B. M., Slater, J., . . . et al. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res, 20(3), 221-227.PubMedCrossRefGoogle Scholar
  6. Beste, C., Steenbergen, L., Sellaro, R., Grigoriadou, S., Zhang, R., Chmielewski, W., . . . Colzato, L. S. (2016). Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control - A Study Using Transcutaneous Vagus Nerve Stimulation. Brain Stimulation. doi: https://doi.org/10.1016/j.brs.2016.07.004
  7. Böckler, A., Alpay, G., & Stürmer, B. (2011). Accessory stimuli affect the emergence of conflict, not conflict control. Experimental Psychology, 58(2), 102-109. doi:947X2L7124654048 [pii]10.1027/1618-3169/a000073Google Scholar
  8. Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). alpha-Amylase as a reliable and convenient measure of sympathetic activity: don't start salivating just yet! Psychoneuroendocrinology, 36(4), 449-453. doi: https://doi.org/10.1016/j.psyneuen.2010.12.019 PubMedCrossRefGoogle Scholar
  9. Botvinick, M. (2007). Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cognitive, Affective and Behavioral Neuroscience, 7(4), 356-366.PubMedCrossRefGoogle Scholar
  10. Botvinick, M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652.PubMedCrossRefGoogle Scholar
  11. Botvinick, M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Science, 8(12), 539-546.  https://doi.org/10.1016/j.tics.2004.10.003 CrossRefGoogle Scholar
  12. Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5. doi: https://doi.org/10.3389/fpsyg.2014.01134
  13. Braem, S., King, J. A., Korb, F. M., Krebs, R. M., Notebaert, W., & Egner, T. (2013). Affective modulation of cognitive control is determined by performance-contingency and mediated by ventromedial prefrontal and cingulate cortex. J Neurosci, 33(43), 16961-16970. doi: https://doi.org/10.1523/JNEUROSCI.1208-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Braem, S., King, J. A., Korb, F. M., Krebs, R. M., Notebaert, W., & Egner, T. (2017). The Role of Anterior Cingulate Cortex in the Affective Evaluation of Conflict. Journal of Cognitive Neuroscience, 29(1), 137-149. doi: https://doi.org/10.1162/jocn_a_01023 PubMedCrossRefGoogle Scholar
  15. Bugg, J. M., & Crump, M. J. (2012). In support of a distinction between voluntary and stimulus-driven control: A review of the literature on proportion congruent effects. Frontiers in Psychology, 3:367. doi: https://doi.org/10.3389/fpsyg.2012.00367 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci, 4(6), 215-222.PubMedCrossRefGoogle Scholar
  17. Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., . . . de Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci, 13(12), 1526-1533. doi: https://doi.org/10.1038/nn.2682
  18. Chatterton, R. T., Jr., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol, 16(4), 433-448.PubMedCrossRefGoogle Scholar
  19. Clayson, P. E., & Larson, M. J. (2011a). Conflict adaptation and sequential trial effects: support for the conflict monitoring theory. Neuropsychologia, 49(7), 1953-1961. doi: https://doi.org/10.1016/j.neuropsychologia.2011.03.023 PubMedCrossRefGoogle Scholar
  20. Clayson, P. E., & Larson, M. J. (2011b). Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control. Psychophysiology, 48(12), 1621-1630. doi: https://doi.org/10.1111/j.1469-8986.2011.01265.x PubMedCrossRefGoogle Scholar
  21. Clayton, E. C., & Williams, C. L. (2000). Adrenergic activation of the nucleus tractus solitarius potentiates amygdala norepinephrine release and enhances retention performance in emotionally arousing and spatial memory tasks. Behavioural Brain Research, 112(1-2), 151-158. doi: https://doi.org/10.1016/S0166-4328(00)00178-9 PubMedCrossRefGoogle Scholar
  22. Cohen, J. D., Aston-Jones, G., & Gilzenrat, M. S. (2004). A system-level perspective on attention and cognitive control: Guided activation, adaptive gating, conflict monitoring, and exploitation vs. exploration. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 71-90). New York: Guilford Press.Google Scholar
  23. Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 933-942. doi: https://doi.org/10.1098/rstb.2007.2098 CrossRefGoogle Scholar
  24. Colzato, L. S., Ritter, S. M., & Steenbergen, L. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia, 111, 72-76. doi: https://doi.org/10.1016/j.neuropsychologia.2018.01.003 PubMedCrossRefGoogle Scholar
  25. Colzato, L. S., Sellaro, R., & Beste, C. (2017). Darwin revisited: The vagus nerve is a causal element in controlling recognition of other's emotions. Cortex, 92, 95-102. doi: https://doi.org/10.1016/j.cortex.2017.03.017 PubMedCrossRefGoogle Scholar
  26. Colzato, L. S., & Vonck, K. (2017). Transcutaneous vagus and trigeminal nerve stimulation. In L. Colzato (Ed.), Theory-driven approaches to cognitive enhancement: Springer International Publishing.Google Scholar
  27. Colzato, L. S., Wolters, G., & Peifer, C. (2018). Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience. Exp Brain Res, 236(1), 253-257. doi: https://doi.org/10.1007/s00221-017-5123-0 PubMedCrossRefGoogle Scholar
  28. Critchley, H. D. (2009). Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. International Journal of Psychophysiology, 73(2), 88-94. doi: https://doi.org/10.1016/j.ijpsycho.2009.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46(6), 1288-1298. doi: https://doi.org/10.1111/j.1469-8986.2009.00860.x PubMedCrossRefGoogle Scholar
  30. de Rover, M., Brown, S. B., Band, G. P., Giltay, E. J., van Noorden, M. S., van der Wee, N. J., & Nieuwenhuis, S. (2015). Beta receptor-mediated modulation of the oddball P3 but not error-related ERP components in humans. Psychopharmacology (Berl), 232(17), 3161-3172. doi: https://doi.org/10.1007/s00213-015-3966-2 CrossRefGoogle Scholar
  31. DeGiorgio, C. M., Schachter, S. C., Handforth, A., Salinsky, M., Thompson, J., Uthman, B., . . . Heck, C. (2000). Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia, 41(9), 1195-1200.Google Scholar
  32. Desbeaumes Jodoin, V., Lesperance, P., Nguyen, D. K., Fournier-Gosselin, M. P., Richer, F., & Centre Hospitalier de l'Universite de Montreal, Canada. (2015). Effects of vagus nerve stimulation on pupillary function. Int J Psychophysiol, 98(3 Pt 1), 455-459. doi: https://doi.org/10.1016/j.ijpsycho.2015.10.001 PubMedCrossRefGoogle Scholar
  33. Dietrich, S., Smith, J., Scherzinger, C., Hofmann-Preiss, K., Freitag, T., Eisenkolb, A., & Ringler, R. (2008). A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed Tech (Berl), 53(3), 104-111. doi: https://doi.org/10.1515/BMT.2008.022 CrossRefGoogle Scholar
  34. Dignath, D., Janczyk, M., & Eder, A. B. (2017). Phasic valence and arousal do not influence post-conflict adjustments in the Simon task. Acta Psychol (Amst), 174, 31-39. doi: https://doi.org/10.1016/j.actpsy.2017.01.004 CrossRefGoogle Scholar
  35. Dignath, D., Kiesel, A., & Eder, A. B. (2015). Flexible conflict management: conflict avoidance and conflict adjustment in reactive cognitive control. J Exp Psychol Learn Mem Cogn, 41(4), 975-988. doi: https://doi.org/10.1037/xlm0000089 PubMedCrossRefGoogle Scholar
  36. Dorr, A. E., & Debonnel, G. (2006). Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. Journal of Pharmacology and Experimental Therapeutics, 318(2), 890-898. doi: https://doi.org/10.1124/jpet.106.104166 PubMedCrossRefGoogle Scholar
  37. Dreisbach, G., & Fischer, R. (2012a). Conflicts as aversive signals. Brain and Cognition, 78(2), 94-98. doi: https://doi.org/10.1016/j.bandc.2011.12.003 PubMedCrossRefGoogle Scholar
  38. Dreisbach, G., & Fischer, R. (2012b). The role of affect and reward in the conflict-triggered adjustment of cognitive control. Frontiers in Human Neuroscience, 6, 342. doi: https://doi.org/10.3389/fnhum.2012.00342 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dreisbach, G., & Fischer, R. (2015). Conflicts as Aversive Signals for Control Adaptation. Current Directions in Psychological Science, 24(4), 255-260. doi: https://doi.org/10.1177/0963721415569569 CrossRefGoogle Scholar
  40. Dreisbach, G., & Fischer, R. (2016). Conflicts as aversive signals: Motivation for control adaptation in the service of affect regulation. In Todd Braver (Ed.), Motivation and cognitive control. New York: Psychology Press.Google Scholar
  41. Dreisbach, G., Reindl, A.-L., & Fischer, R. (2017). Conflcit and disfluency as aversive signals: Context-specific processing adjustments are modulated by affective location associations. . Psychological Research, online first. doi: https://doi.org/10.1007/s00426-016-0822-x
  42. Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014). The heterogeneous world of congruency sequence effects: an update. Frontiers in Psychology, 5. doi: https://doi.org/10.3389/Fpsyg.2014.01001
  43. Ebitz, R. B., & Platt, M. L. (2015). Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron, 85(3), 628-640. doi: https://doi.org/10.1016/j.neuron.2014.12.053 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective & Behavioral Neuroscience, 7(4), 380-390.CrossRefGoogle Scholar
  45. Egner, T. (2014). Creatures of habit (and control): a multi-level learning perspective on the modulation of congruency effects. Front Psychol, 5, 1247. doi: https://doi.org/10.3389/fpsyg.2014.01247 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Egner, T. (2017). Conflict adaptation: Past, present, and future of the congruence sequence effect as an index of cognitive control. In T. Egner (Ed.), The Wiley handbook of cognitive control (pp. 64-78). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  47. Ellrich, J. (2011). Transcutaneous vagus nerve stimulation. European Neurological Review, 6(4), 254-256. doi: https://doi.org/10.17925/ENR.2011.06.04.254 CrossRefGoogle Scholar
  48. Englot, D. J., Chang, E. F., & Auguste, K. I. (2011). Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg, 115(6), 1248-1255. doi: https://doi.org/10.3171/2011.7.JNS11977 PubMedCrossRefGoogle Scholar
  49. Fischer, R., Dreisbach, G., & Goschke, T. (2008). Context-sensitive adjustments of cognitive control: conflict-adaptation effects are modulated by processing demands of the ongoing task. Journal of Experimental Psychology: Learning, Memory and Cognition, 34(3), 712-718. doi: https://doi.org/10.1037/0278-7393.34.3.712 CrossRefGoogle Scholar
  50. Fischer, R., Plessow, F., Dreisbach, G., & Goschke, T. (2015). Individual differences in the context-dependent recruitment of cognitive control: Evidence from action versus state orientation. J Pers, 83(5), 575-583. doi: https://doi.org/10.1111/jopy.12140 PubMedCrossRefGoogle Scholar
  51. Fischer, R., Plessow, F., & Kiesel, A. (2010). Auditory warning signals affect mechanisms of response selection: evidence from a Simon task. Experimental Psychology, 57(2), 89-97. doi: https://doi.org/10.1027/1618-3169/a000012 PubMedCrossRefGoogle Scholar
  52. Forster, S. E., Carter, C. S., Cohen, J. D., & Cho, R. Y. (2011). Parametric manipulation of the conflict signal and control-state adaptation. Journal of Cognitive Neuroscience, 23(4), 923-935. doi: https://doi.org/10.1162/jocn.2010.21458 PubMedCrossRefGoogle Scholar
  53. Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulation, 8(3), 624-636. doi: https://doi.org/10.1016/j.brs.2014.11.018 PubMedCrossRefGoogle Scholar
  54. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci, 17(1), 51-72. doi: https://doi.org/10.1162/0898929052880093 PubMedCrossRefGoogle Scholar
  55. Freitas, A. L., Banai, R., & Clark, S. L. (2009). When cognitive control is calibrated: Event-related potential correlates of adapting to information-processing conflict despite erroneous response preparation. Psychophysiology, 46(6), 1226-1233. doi: https://doi.org/10.1111/j.1469-8986.2009.00864.x PubMedCrossRefGoogle Scholar
  56. Fritz, J., & Dreisbach, G. (2013). Conflicts as aversive signals: Conflict priming increases negative judgments for neutral stimuli. Cogn Affect Behav Neurosci, 13(2), 311-317. doi: https://doi.org/10.3758/s13415-012-0147-1 PubMedCrossRefGoogle Scholar
  57. Fritz, J., & Dreisbach, G. (2015). The time course of the aversive conflict signal. Exp Psychol, 62(1), 30-39. doi: https://doi.org/10.1027/1618-3169/a000271 PubMedCrossRefGoogle Scholar
  58. Fritz, J., Fischer, R., & Dreisbach, G. (2015). The influence of negative stimulus features on conflict adaption: Evidence from fluency of processing. Front Psychol, 6, 185. doi: https://doi.org/10.3389/fpsyg.2015.00185 PubMedPubMedCentralCrossRefGoogle Scholar
  59. George, M. S., & Aston-Jones, G. (2010). Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology, 35(1), 301-316. doi: https://doi.org/10.1038/npp.2009.87 PubMedCrossRefGoogle Scholar
  60. Goschke, T. (2013). Volition in action: Intentions, control dilemmas and the dynamic regulation of cognitive intentional control. In W. Prinz, A. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline. Cambridge, MA: MIT Press.Google Scholar
  61. Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480-506.CrossRefGoogle Scholar
  62. He, W., Jing, X. H., Zhu, B., Zhu, X. L., Li, L., Bai, W. Z., & Ben, H. (2013). The auriculo-vagal afferent pathway and its role in seizure suppression in rats. BMC Neurosci, 14, 85. doi: https://doi.org/10.1186/1471-2202-14-85 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709.PubMedCrossRefGoogle Scholar
  64. Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychol (Amst), 136(2), 189-202. doi: https://doi.org/10.1016/j.actpsy.2010.04.011S0001-6918(10)00083-1 CrossRefGoogle Scholar
  65. Hommel, B. (2015). Between Persistence and Flexibility: The Yin and Yang of Action Control. In J. Elliot Andrew (Ed.), Advances in Motivation Science (Vol. Volume 2, pp. 33-67): Elsevier.Google Scholar
  66. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19(3), 126-132. doi: https://doi.org/10.1016/j.tics.2015.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jacobs, H. I., Riphagen, J. M., Razat, C. M., Wiese, S., & Sack, A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiology of Aging, 36(5), 1860-1867. doi: https://doi.org/10.1016/j.neurobiolaging.2015.02.023 PubMedCrossRefGoogle Scholar
  68. Jocham, G., & Ullsperger, M. (2009). Neuropharmacology of performance monitoring. Neuroscience and Biobehavioral Reviews, 33(1), 48-60. doi: https://doi.org/10.1016/j.neubiorev.2008.08.011 PubMedCrossRefGoogle Scholar
  69. Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234. doi: https://doi.org/10.1016/j.neuron.2015.11.028 PubMedCrossRefGoogle Scholar
  70. Junghöfer, M., Elbert, T., Tucker, D. M., & Rockstroh, B. (2000). Statistical control of artifacts in dense array EEG/MEG studies. Psychophysiology, 37(4), 523-532.PubMedCrossRefGoogle Scholar
  71. Kobayashi, N., Yoshino, A., Takahashi, Y., & Nomura, S. (2007). Autonomic arousal in cognitive conflict resolution. Autonomic Neuroscience-Basic & Clinical, 132(1-2), 70-75.CrossRefGoogle Scholar
  72. Kraus, T., Hosl, K., Kiess, O., Schanze, A., Kornhuber, J., & Forster, C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm (Vienna), 114(11), 1485-1493. doi: https://doi.org/10.1007/s00702-007-0755-z CrossRefGoogle Scholar
  73. Kraus, T., Kiess, O., Hosl, K., Terekhin, P., Kornhuber, J., & Forster, C. (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimulation, 6(5), 798-804. doi: https://doi.org/10.1016/j.brs.2013.01.011 PubMedCrossRefGoogle Scholar
  74. Kreuzer, P. M., Landgrebe, M., Husser, O., Resch, M., Schecklmann, M., Geisreiter, F., . . . Langguth, B. (2012). Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psychiatry, 3, 70. doi: https://doi.org/10.3389/fpsyt.2012.00070
  75. Larson, M. J., Clayson, P. E., & Baldwin, S. A. (2012). Performance monitoring following conflict: Internal adjustments in cognitive control? Neuropsychologia, 50(3), 426-433. doi: https://doi.org/10.1016/j.neuropsychologia.2011.12.021 PubMedCrossRefGoogle Scholar
  76. Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283-297. doi: https://doi.org/10.1016/j.ijpsycho.2014.06.007 PubMedCrossRefGoogle Scholar
  77. Liu, K., Gao, X. Y., Li, L., Ben, H., Qin, Q. G., Zhao, Y. X., & Zhu, B. (2014). Neurons in the nucleus tractus solitarius mediate the acupuncture analgesia in visceral pain rats. Autonomic Neuroscience-Basic & Clinical, 186, 91-94. doi: https://doi.org/10.1016/j.autneu.2014.08.004 CrossRefGoogle Scholar
  78. McIntyre, C. K., McGaugh, J. L., & Williams, C. L. (2012). Interacting brain systems modulate memory consolidation. Neuroscience & Biobehavioral Reviews, 36(7), 1750-1762. doi: https://doi.org/10.1016/j.neubiorev.2011.11.001 CrossRefGoogle Scholar
  79. Mello-Carpes, P. B., & Izquierdo, I. (2013). The Nucleus of the Solitary Tract -> Nucleus Paragigantocellularis -> Locus Coeruleus -> CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol Learn Mem, 100, 56-63. doi: https://doi.org/10.1016/j.nlm.2012.12.002 PubMedCrossRefGoogle Scholar
  80. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review: Neuroscience, 24, 167-202. doi: https://doi.org/10.1146/annurev.neuro.24.1.16724/1/167 [pii]CrossRefGoogle Scholar
  81. Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34(4), 486-496. doi: https://doi.org/10.1016/j.psyneuen.2009.01.014 PubMedCrossRefGoogle Scholar
  82. Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci, 3(1), 17-26.PubMedCrossRefGoogle Scholar
  83. Nomura, S., & Mizuno, N. (1984). Central distribution of primary afferent fibers in the Arnold's nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat. Brain Res, 292(2), 199-205.PubMedCrossRefGoogle Scholar
  84. Padmala, S., Bauer, A., & Pessoa, L. (2011). Negative emotion impairs conflict-driven executive control. Frontiers in Psychology, 2, 192. doi: https://doi.org/10.3389/fpsyg.2011.00192 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Peuker, E. T., & Filler, T. J. (2002). The nerve supply of the human auricle. Clin Anat, 15(1), 35-37. doi: https://doi.org/10.1002/ca.1089 PubMedCrossRefGoogle Scholar
  86. Peyk, P., De Cesarei, A., & Junghöfer, M. (2011). Electromagnetic encephalography software: Overview and integration with other EEG/MEG toolboxes. Computational Intelligence and Neuroscience. doi: https://doi.org/10.1155/2011/861705
  87. Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly focused under stress: Acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. Journal of Cognitive Neuroscience, 23(11), 3218-3227. doi: https://doi.org/10.1162/jocn_a_00024 PubMedCrossRefGoogle Scholar
  88. Polich, J. (2007). Updating p300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. doi: https://doi.org/10.1016/j.clinph.2007.04.019 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Porrino, L. J., & Goldman-Rakic, P. S. (1982). Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol, 205(1), 63-76. doi: https://doi.org/10.1002/cne.902050107 PubMedCrossRefGoogle Scholar
  90. Raedt, R., Clinckers, R., Mollet, L., Vonck, K., El Tahry, R., Wyckhuys, T., . . . Meurs, A. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J Neurochem, 117(3), 461-469. doi: https://doi.org/10.1111/j.1471-4159.2011.07214.x
  91. Riba, J., Rodriguez-Fornells, A., Morte, A., Munte, T. F., & Barbanoj, M. J. (2005). Noradrenergic stimulation enhances human action monitoring. J Neurosci, 25(17), 4370-4374. doi: https://doi.org/10.1523/JNEUROSCI.4437-04.2005 PubMedCrossRefGoogle Scholar
  92. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447. doi: https://doi.org/10.1126/science.1100301 PubMedCrossRefGoogle Scholar
  93. Roosevelt, R. W., Smith, D. C., Clough, R. W., Jensen, R. A., & Browning, R. A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res, 1119(1), 124-132. doi: https://doi.org/10.1016/j.brainres.2006.08.048
  94. Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci, 10(3), 211-223. doi: https://doi.org/10.1038/nrn2573 PubMedCrossRefGoogle Scholar
  95. Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130-141. doi: https://doi.org/10.1016/j.neuron.2012.09.011 PubMedCrossRefGoogle Scholar
  96. Schacht, A., Dimigen, O., & Sommer, W. (2010). Emotions in cognitive conflicts are not aversive but are task specific. Cognitive Affective & Behavioral Neuroscience, 10(3), 349-356. doi: https://doi.org/10.3758/Cabn.10.3.349 CrossRefGoogle Scholar
  97. Schevernels, H., van Bochove, M. E., De Taeye, L., Bombeke, K., Vonck, K., Van Roost, D., . . . Boehler, C. N. (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy Behav, 64(Pt A), 171-179. doi: https://doi.org/10.1016/j.yebeh.2016.09.014
  98. Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., & Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clin Neurophysiol, 118(1), 98-104. doi: https://doi.org/10.1016/j.clinph.2006.09.003 PubMedCrossRefGoogle Scholar
  99. Schmidt, J. R. (2013). Questioning conflict adaptation: proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin & Review, 20(4), 615-630.CrossRefGoogle Scholar
  100. Schouppe, N., Braem, S., De Houwer, J., Silvetti, M., Verguts, T., Ridderinkhof, K. R., & Notebaert, W. (2015). No pain, no gain: the affective valence of congruency conditions changes following a successful response. Cognitive Affective & Behavioral Neuroscience, 15(1), 251-261. doi: https://doi.org/10.3758/s13415-014-0318-3 CrossRefGoogle Scholar
  101. Schouppe, N., De Houwer, J., Ridderinkhof, K. R., & Notebaert, W. (2012). Conflict: run! Reduced Stroop interference with avoidance responses. Quarterly Journal of Experimental Psychology, 65(6), 1052-1058. doi: https://doi.org/10.1080/17470218.2012.685080 CrossRefGoogle Scholar
  102. Schuch, S., & Koch, I. (2015). Mood states influence cognitive control: the case of conflict adaptation. Psychol Res, 79(5), 759-772. doi: https://doi.org/10.1007/s00426-014-0602-4 PubMedCrossRefGoogle Scholar
  103. Sellaro, R., de Gelder, B., Finisguerra, A., & Colzato, L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex, 99, 213-223. doi: https://doi.org/10.1016/j.cortex.2017.11.007 PubMedCrossRefGoogle Scholar
  104. Sellaro, R., van Leusden, J. W., Tona, K. D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation enhances post-error slowing. J Cogn Neurosci, 27(11), 2126-2132. doi: https://doi.org/10.1162/jocn_a_00851 PubMedCrossRefGoogle Scholar
  105. Steenbergen, L., Sellaro, R., Stock, A. K., Verkuil, B., Beste, C., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur Neuropsychopharmacol, 25(6), 773-778. doi: https://doi.org/10.1016/j.euroneuro.2015.03.015 PubMedCrossRefGoogle Scholar
  106. Ungless, M. A., Magill, P. J., & Bolam, J. P. (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303(5666), 2040-2042. doi: https://doi.org/10.1126/science.1093360 PubMedCrossRefGoogle Scholar
  107. Van Bockstaele, E. J., Peoples, J., & Telegan, P. (1999). Efferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: Evidence for a monosynaptic pathway. J Comp Neurol, 412(3), 410-428.PubMedCrossRefGoogle Scholar
  108. Van Leusden, J. W., Sellaro, R., & Colzato, L. S. (2015). Transcutaneous Vagal Nerve Stimulation (tVNS): A new neuromodulation tool in healthy humans? Front Psychol, 6, 102. doi: https://doi.org/10.3389/fpsyg.2015.00102 PubMedPubMedCentralCrossRefGoogle Scholar
  109. van Steenbergen, H. (2015). Affective modulation of cognitive control: A biobehavioral perspective. In G. H. E. Gendolla, M. Tops, & S. L. Koole (Eds.), Handbook of biobehavioral approaches to self-regulation (pp. 89-107). New York: Springer.Google Scholar
  110. van Steenbergen, H., & Band, G. P. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Front Hum Neurosci, 7, 215. doi: https://doi.org/10.3389/fnhum.2013.00215 PubMedPubMedCentralCrossRefGoogle Scholar
  111. van Steenbergen, H., Band, G. P., & Hommel, B. (2010). In the mood for adaptation: how affect regulates conflict-driven control. Psychological Science, 21(11), 1629-1634. doi: https://doi.org/10.1177/0956797610385951 PubMedCrossRefGoogle Scholar
  112. van Steenbergen, H., Band, G. P., & Hommel, B. (2011). Threat but not arousal narrows attention: evidence from pupil dilation and saccade control. Front Psychol, 2, 281. doi: https://doi.org/10.3389/fpsyg.2011.00281 PubMedPubMedCentralCrossRefGoogle Scholar
  113. van Steenbergen, H., Weissman, D. H., Stein, D. J., Malcolm-Smith, S., & van Honk, J. (2017). More pain, more gain: Blocking the opioid system boosts adaptive cognitive control. Psychoneuroendocrinology, 80, 99-103. doi: https://doi.org/10.1016/j.psyneuen.2017.03.002 PubMedCrossRefGoogle Scholar
  114. van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav, 77(4-5), 477-482. doi: https://doi.org/10.1016/S0031-9384(02)00930-7 PubMedCrossRefGoogle Scholar
  115. Venables, N. C., Patrick, C. J., Hall, J. R., & Bernat, E. M. (2011). Clarifying relations between dispositional aggression and brain potential response: Overlapping and distinct contributions of impulsivity and stress reactivity. Biol Psychol, 86(3), 279-288. doi: https://doi.org/10.1016/j.biopsycho.2010.12.009 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ventura-Bort, C., Wirkner, J., Genheimer, H., Wendt, J., Hamm, A. O., & Weymar, M. (submitted). Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: A pilot study.Google Scholar
  117. Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: dealing with specific and nonspecific adaptation. Psychological Review, 115(2), 518-525. doi: https://doi.org/10.1037/0033-295x.115.2.518 PubMedCrossRefGoogle Scholar
  118. Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Science, 13(6), 252-257. doi: https://doi.org/10.1016/j.tics.2009.02.007 CrossRefGoogle Scholar
  119. Verguts, T., Notebaert, W., Kunde, W., & Wühr, P. (2011). Post-conflict slowing: Cognitive adaptation after conflict processing. Psychonomic Bulletin & Review, 18(1), 76-82. doi: https://doi.org/10.3758/s13423-010-0016-2 CrossRefGoogle Scholar
  120. Vidaurre, C., Sander, T. H., & Schlögl, A. (2011). BioSig: the free and open source software library for biomedical signal processing. Comput Intell Neurosci, 2011, 935364. doi: https://doi.org/10.1155/2011/935364 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Warren, C. M., van den Brink, R. L., Nieuwenhuis, S., & Bosch, J. A. (2017). Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase. Psychoneuroendocrinology, 78, 233-236. doi: https://doi.org/10.1016/j.psyneuen.2017.01.029 PubMedCrossRefGoogle Scholar
  122. Wendt, M., Kiesel, A., Geringswald, F., Purmann, S., & Fischer, R. (2014). Attentional adjustment to conflict strength: evidence from the effects of manipulating flanker-target SOA on response times and prestimulus pupil size. Experimental Psychology, 61(1), 55-67.PubMedCrossRefGoogle Scholar
  123. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931-959. doi: https://doi.org/10.1037/0033-295X.111.4.939 PubMedCrossRefGoogle Scholar
  124. Yuan, H., & Silberstein, S. D. (2016). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. Headache, 56(2), 259-266. doi: https://doi.org/10.1111/head.12650 PubMedCrossRefGoogle Scholar
  125. Zeng, Q., Qi, S., Li, M., Yao, S., Ding, C., & Yang, D. (2016). Enhanced conflict-driven cognitive control by emotional arousal, not by valence. Cogn Emot, 1-14. doi: https://doi.org/10.1080/02699931.2016.1189882

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Rico Fischer
    • 1
    Email author
  • Carlos Ventura-Bort
    • 2
  • Alfons Hamm
    • 1
  • Mathias Weymar
    • 2
  1. 1.Department of PsychologyUniversity of GreifswaldGreifswaldGermany
  2. 2.Department of PsychologyUniversity of PotsdamPotsdamGermany

Personalised recommendations