Task-dependent evaluative processing of moral and emotional content during comprehension: An ERP study

  • Angelika Kunkel
  • Ruth Filik
  • Ian Grant Mackenzie
  • Hartmut Leuthold
Article

Abstract

Recently, we showed that when participants passively read about moral transgressions (e.g., adultery), they implicitly engage in the evaluative (good–bad) categorization of incoming information, as indicated by a larger event-related brain potential (ERP) positivity to immoral than to moral scenarios (Leuthold, Kunkel, Mackenzie, & Filik in Social, Cognitive, and Affective Neuroscience, 10, 1021–1029, 2015). Behavioral and neuroimaging studies indicated that explicit moral tasks prioritize the semantic-cognitive analysis of incoming information but that implicit tasks, as used in Leuthold et al. (Social, Cognitive, and Affective Neuroscience, 10, 1021–1029, 2015), favor their affective processing. Therefore, it is unclear whether an affective categorization process is also involved when participants perform explicit moral judgments. Thus, in two experiments, we used similarly constructed morality and emotion materials for which their moral and emotional content had to be inferred from the context. Target sentences from negative vs. neutral emotional scenarios and from moral vs. immoral scenarios were presented using rapid serial visual presentation. In Experiment 1, participants made moral judgments for moral materials and emotional judgments for emotion materials. Negative compared to neutral emotional scenarios elicited a larger posterior ERP positivity (LPP) about 200 ms after critical word onset, whereas immoral compared to moral scenarios elicited a larger anterior negativity (500–700 ms). In Experiment 2, where the same emotional judgment to both types of materials was required, a larger LPP was triggered for both types of materials. These results accord with the view that morality scenarios trigger a semantic-cognitive analysis when participants explicitly judge the moral content of incoming linguistic information but an affective evaluation when judging their emotional content.

Keywords

Moral judgment Emotion judgment Affective evaluation LPP Anterior negativity 

Notes

Acknowledgements

The work reported in this paper was supported by a grant of the German Research Foundation (DFG) awarded to H.L. (LE 1035/4-1). We thank three anonymous reviewers for their constructive and very helpful comments.

References

  1. Avramova, Y. R., & Inbar, Y. (2013). Emotion and moral judgment. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 169–178.PubMedGoogle Scholar
  2. Baetens, K., Van der Cruyssen, L., Achtziger, A., Vandekerckhove, M., & Van Overwalle, F. (2011). N400 and LPP in spontaneous trait inferences. Brain Research, 1418, 83–92.CrossRefPubMedGoogle Scholar
  3. Baggio, G., Van Lambalgen, M., & Hagoort, P. (2008). Computing and recomputing discourse models: An ERP study. Journal of Memory and Language, 59, 36–53.CrossRefGoogle Scholar
  4. Bargh, J. A., Chaiken, S., Raymond, P., & Hymes, C. (1996). The automatic evaluation effect: Unconditional automatic attitude activation with a pronunciation task. Journal of Experimental Social Psychology, 32, 104–128.CrossRefGoogle Scholar
  5. Bartholow, B. D., Fabiani, M., Gratton, G., & Bettencourt, B. A. (2001). A psychophysiological examination of cognitive processing of and affective responses to social expectancy violations. Psychological Science, 12, 197–204.CrossRefPubMedGoogle Scholar
  6. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4 (R Package Version 1.1–13) [Computer software]. Retrieved from http://http://CRAN.R-project.org/package=lme4
  7. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.CrossRefPubMedGoogle Scholar
  8. Bohan, J., Leuthold, H., Hijikata, Y., & Sanford, A. J. (2012). The processing of good-fit semantic anomalies: An ERP investigation. Neuropsychologia, 50, 3174–3184.CrossRefPubMedGoogle Scholar
  9. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.Google Scholar
  10. Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bölte, J., & Böhl, A. (2011). The word frequency effect: A review of recent developments and implications for the choice of frequency estimates in German. Experimental Psychology, 58, 412–424.CrossRefPubMedGoogle Scholar
  11. Citron, F. M. (2012). Neural correlates of written emotion word processing: A review of recent electrophysiological and hemodynamic neuroimaging studies. Brain and Language, 122, 211–226.CrossRefPubMedGoogle Scholar
  12. Cunningham, W. A., & Zelazo, P. D. (2007). Attitudes and evaluations: A social cognitive neuroscience perspective. Trends in Cognitive Sciences, 11, 97–104.CrossRefPubMedGoogle Scholar
  13. Delaney-Busch, N., & Kuperberg, G. (2013). Friendly drug-dealers and terrifying puppies: Affective primacy can attenuate the N400 effect in emotional discourse contexts. Cognitive, Affective, & Behavioral Neuroscience, 13, 473–490.CrossRefGoogle Scholar
  14. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMedGoogle Scholar
  15. Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–374.CrossRefGoogle Scholar
  16. Dudschig, C., Mackenzie, I. G., Strozyk, J., Kaup, B., & Leuthold, H. (2016). The sounds of sentences: Differentiating the influence of physical sound, sound imagery, and linguistically implied sounds on physical sound processing. Cognitive, Affective, & Behavioral Neuroscience, 16, 940–961.CrossRefGoogle Scholar
  17. Eder, A. B., Leuthold, H., Rothermund, K., & Schweinberger, S. R. (2012). Automatic response activation in sequential affective priming: An ERP study. Social, Cognitive, and Affective Neuroscience, 7, 436–445.CrossRefGoogle Scholar
  18. Ferretti, T. R., Singer, M., & Patterson, C. (2008). Electrophysiological evidence for the time-course of verifying text ideas. Cognition, 108, 881–888.CrossRefPubMedGoogle Scholar
  19. Fields, E. C., & Kuperberg, G. R. (2012). It’s all about you: An ERP study of emotion and self-relevance in discourse. NeuroImage, 62, 562–574.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fields, E. C., & Kuperberg, G. R. (2016). Dynamic effects of self-relevance and task on the neural processing of emotional words in context. Frontiers in Psychology, 6.  https://doi.org/10.3389/fpsyg.2015.02003
  21. Filik, R., & Leuthold, H. (2008). Processing local pragmatic anomalies in fictional contexts: Evidence from the N400. Psychophysiology, 45, 554–558.CrossRefPubMedGoogle Scholar
  22. Filik, R., & Leuthold, H. (2013). The role of character-based knowledge in online narrative comprehension: Evidence from eye movements and ERPs. Brain Research, 1506, 94–104.CrossRefPubMedGoogle Scholar
  23. Fischler, I., Bloom, P. A., Childers, D. G., Arroyo, A. A., & Perry, N. W. (1984). Brain potentials during sentence verification: Late negativity and long-term memory strength. Neuropsychologia, 22, 559–568.CrossRefPubMedGoogle Scholar
  24. Fischler, I., & Bradley, M. (2006). Event-related potential studies of language and emotion: Words, phrases, and task effects. Progress in Brain Research, 156, 185–203.CrossRefPubMedGoogle Scholar
  25. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293, 2105–2108.CrossRefPubMedGoogle Scholar
  26. Günther, F., Dudschig, C., & Kaup, B. (2015). LSAfun—An R package for computations based on Latent Semantic Analysis. Behavior Research Methods, 47, 930–944.Google Scholar
  27. Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. (2004). Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441.CrossRefPubMedGoogle Scholar
  28. Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108, 814.CrossRefPubMedGoogle Scholar
  29. Hajcak, G., MacNamara, A., & Olvet, D. M. (2010). Event-related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35, 129–155.CrossRefPubMedGoogle Scholar
  30. Hajcak, G., Weinberg, A., MacNamara, A., & Foti, D. (2012). ERPs and the study of emotion. In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of ERP components (pp. 441–474). New York: Oxford University Press.Google Scholar
  31. Herring, D. R., Taylor, J. H., White, K. R., & Crites, S. L., Jr. (2011). Electrophysiological responses to evaluative priming: The LPP is sensitive to incongruity. Emotion, 11, 794–806.CrossRefPubMedGoogle Scholar
  32. Holt, D. J., Lynn, S. K., & Kuperberg, G. R. (2009). Neurophysiological correlates of comprehending emotional meaning in context. Journal of Cognitive Neuroscience, 21, 2245–2262.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ito, T. A., Larsen, J. T., Smith, N. K., & Cacioppo, J. T. (1998). Negative information weighs more heavily on the brain: The negativity bias in evaluative categorizations. Journal of Personality and Social Psychology, 75, 887–900.CrossRefPubMedGoogle Scholar
  34. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Johnson, R., Jr. (1988). The amplitude of the P300 component of the event-related potential: Review and synthesis. In P. K. Ackles, J. R. Jennings, & M. G. H. Coles, (Eds.). Advances in psychophysiology (Vol. 3, pp. 69–138). Greenwich, CT: JAI Press.Google Scholar
  36. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3? Perception, 36 [ECVP Abstract Supplement, p. 14].Google Scholar
  37. Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: Challenges to syntax. Brain Research, 1146, 23–49.CrossRefPubMedGoogle Scholar
  38. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307, 161–163.CrossRefPubMedGoogle Scholar
  40. Lai, V. T., Hagoort, P., & Casasanto, D. (2012). Affective primacy vs. cognitive primacy: Dissolving the debate. Frontiers in Psychology, 3, 243.  https://doi.org/10.3389/fpsyg.2012.00243 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259–284.CrossRefGoogle Scholar
  42. León, I., Díaz, J. M., de Vega, M., & Hernández, J. A. (2010). Discourse-based emotional consistency modulates early and middle components of event-related potentials. Emotion, 10, 863–873.CrossRefPubMedGoogle Scholar
  43. Leuthold, H., Filik, R., Mackenzie, I. G., & Murphy, K. (2012). The on-line processing of socio-emotional information in prototypical scenarios: Inferences from brain potentials. Social, Cognitive, and Affective Neuroscience, 7, 457–466.CrossRefGoogle Scholar
  44. Leuthold, H., Kunkel, A., Mackenzie, I. G., & Filik, R. (2015). Online processing of moral transgressions: ERP evidence for spontaneous evaluation. Social, Cognitive, and Affective Neuroscience, 10, 1021–1029.CrossRefGoogle Scholar
  45. Moll, J., de Oliveira-Souza, R., Bramati, I. E., & Grafman, J. (2002). Functional networks in emotional moral and nonmoral social judgments. NeuroImage, 16, 696–703.CrossRefPubMedGoogle Scholar
  46. Morris, J. P., Squires, N. K., Taber, C. S., & Lodge, M. (2003). Activation of political attitudes: A psychophysiological examination of the hot cognition hypothesis. Political Psychology, 24, 727–745.CrossRefGoogle Scholar
  47. Nieuwenhuis, S., Aston-Jones, G., & Cohen, J.D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131, 510–532.CrossRefPubMedGoogle Scholar
  48. Nieuwland, M. S., & Van Berkum, J. J. A. (2006). When peanuts fall in love: N400 evidence for the power of discourse. Journal of Cognitive Neuroscience, 18, 1098–1111.CrossRefPubMedGoogle Scholar
  49. Nolan, H., Whelan, R., & Reilly, R. (2010). FASTER: Fully automated statistical thresholding for EEG artifact rejection. Journal of Neuroscience Methods, 192, 152–162.CrossRefPubMedGoogle Scholar
  50. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011(156869).  https://doi.org/10.1155/2011/156869
  51. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefPubMedGoogle Scholar
  52. Sevinc, G., & Spreng, R. N. (2014). Contextual and perceptual brain processes underlying moral cognition: A quantitative meta-analysis of moral reasoning and moral emotions. PLOS ONE, 9, e87427.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Storbeck, J., & Clore, G. L. (2007). On the interdependence of cognition and emotion. Cognition and Emotion, 21, 1212–1237.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Van Berkum, J. J. A., Hagoort, P., & Brown, C. M. (1999). Semantic integration in sentences and discourse: Evidence from the N400. Journal of Cognitive Neuroscience, 11, 657–671.CrossRefPubMedGoogle Scholar
  55. Van Berkum, J. J. A., Holleman, B., Nieuwland, M., Otten, M., & Murre, J. (2009). Right or wrong? The brain's fast response to morally objectionable statements. Psychological Science, 20, 1092–1099.CrossRefPubMedGoogle Scholar
  56. Van de Meerendonk, N., Kolk, H. H. J., Chwilla, D. J., & Vissers, C. Th. W. M. (2009). Monitoring in language perception. Language and Linguistics Compass, 3, 1211–1224.CrossRefGoogle Scholar
  57. Van Duynslaeger, M., Van Overwalle, F., & Verstraeten, E. (2007). Electrophysiological time course and brain areas of spontaneous and intentional trait inferences. Social, Cognitive, and Affective Neuroscience, 2, 174–188.CrossRefGoogle Scholar
  58. Xiang, M., & Kuperberg, G. (2015). Reversing expectations during discourse comprehension. Language, Cognition and Neuroscience, 30, 648–672.CrossRefPubMedGoogle Scholar
  59. Zhang, Q., Lawson, A., Guo, C., & Jiang, Y. (2006). Electrophysiological correlates of visual affective priming. Brain Research Bulletin, 71, 316–323.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and memory. Psychological Bulletin, 123, 162–185.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Angelika Kunkel
    • 1
  • Ruth Filik
    • 2
  • Ian Grant Mackenzie
    • 1
  • Hartmut Leuthold
    • 1
  1. 1.Department of PsychologyEberhard Karls University of TübingenTübingenGermany
  2. 2.School of PsychologyUniversity of NottinghamNottinghamUK

Personalised recommendations