Working memory load affects early affective responses to concrete and abstract words differently: Evidence from ERPs

  • Conrad PerryEmail author
  • Aaron T. Willison
  • Megan K. Walker
  • Madeleine C. Nankivell
  • Lee M. Lawrence
  • Alexander Thomas


Early posterior negativity (EPN) is an early-occurring, event-related, potential that is elicited by pictures and words that have highly arousing characteristics. Whilst EPN has been found with words presented in isolation several times, different types of words have shown quite different effects across different types of tasks. One possible reason for this is that memory and attentional demands may affect the way semantic features of words are processed, and this may modulate EPN. This was investigated in a silent reading task using abstract and concrete words of negative and neutral valence and a dual phonological working memory task to manipulate memory load. The results showed that abstract but not concrete words elicited EPN, and this may have affected downstream processing. Further analyses examining alpha desynchronization showed that negative concrete words appeared to be significantly affected by the memory load manipulation, unlike negative abstract words. These results provide evidence that the processing of features in negative concrete words is more affected by working memory and attentional demands than the processing of features in negative abstract words, and this may be responsible for the failure of negative concrete words to elicit EPN in this study. Thus, the extent to which words elicit EPN appears to be dependent on both their semantic representations and competing cognitive processes. These results provide a potential explanation for some of the differences that have been reported in previous experiments as well as insight into how memory and attention can affect the processing of the semantic features of words.


Early posterior negativity Concreteness Emotion Working memory Reading 


Supplementary material

13415_2018_686_MOESM1_ESM.bmp (2.6 mb)
Fig. S1 Grand mean ERPs elicited by negative and neutral words in example electrodes in the four possible conditions. Topographic maps are difference scores (negative minus neutral) averaged across each of the three time-windows (BMP 2700 kb)
13415_2018_686_MOESM2_ESM.bmp (2.6 mb)
Fig. S2 Grand mean ERPs elicited in high and low memory load conditions in example electrodes in the four possible conditions. Topographic maps are difference scores (high minus low) averaged across each of the three time-windows (BMP 2700 kb)
13415_2018_686_MOESM3_ESM.bmp (2.6 mb)
Fig. S3 Grand mean ERPs elicited by concrete and abstract words in example electrodes in the four possible conditions. Topographic maps are difference scores (abstract minus concrete) averaged across each of the three time-windows (BMP 2700 kb)
13415_2018_686_MOESM4_ESM.bmp (5.2 mb)
Fig. S4 Example lower alpha envelopes. Thick lines represent low memory load conditions and thin lines high memory load conditions; only the top half of the envelope is shown and the X-axis starts at 1.15 μV. Note: HNegAbs = High load negative abstract; HNeuAbs = High load neutral abstract; HNegCon = High load negative concrete; HNeuCon = High load neutral concrete; LNegAbs = Low load negative abstract; LNeuAbs = Low load neutral abstract; LNegCon = Low load negative concrete; LNeuCon = Low load neutral concrete (BMP 5357 kb)
13415_2018_686_MOESM5_ESM.bmp (5.2 mb)
Fig. S5 Example upper alpha envelopes. Thick lines represent low memory load conditions and thin lines high memory load conditions; only the top half of the envelope is shown and the X-axis starts at .4μV. Note: HNegAbs = High load negative abstract; HNeuAbs = High load neutral abstract; HNegCon = High load negative concrete; HNeuCon = High load neutral concrete; LNegAbs = Low load negative abstract; LNeuAbs = Low load neutral abstract; LNegCon = Low load negative concrete; LNeuCon = Low load neutral concrete (BMP 5357 kb)


  1. Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., . . . Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39, 445-459. doi: CrossRefPubMedGoogle Scholar
  2. Cao, Y., Yang, Y., & Wang, L. (2018). Concurrent emotional response and semantic unification: An event-related potential study. Cognitive, Affective, & Behavioral Neuroscience, 1-11. doi:
  3. Carretié, L., Hinojosa, J. A., Albert, J., Lopez-Martin, S., De La Gandara, B. S., Igoa, J. M., & Sotillo, M. (2008). Modulation of ongoing cognitive processes by emotionally intense words. Psychophysiology, 45, 188-196. doi: CrossRefPubMedGoogle Scholar
  4. Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice (issues in clinical and cognitive neuropsychology): Cambridge, MA: MIT Press.Google Scholar
  5. Coltheart, M., Davelaar, E., Jonasson, J., & Besner, D. (1977). Access to the internal lexicon. In S. Domic (Ed.), Attention and performance VI (pp. 535-555). Hillsdale, NJ: Erlbaum.Google Scholar
  6. Franken, I. H., Gootjes, L., & van Strien, J. W. (2009). Automatic processing of emotional words during an emotional Stroop task. Neuroreport, 20, 776-781. doi: CrossRefPubMedGoogle Scholar
  7. Herbert, C., Junghofer, M., & Kissler, J. (2008). Event related potentials to emotional adjectives during reading. Psychophyiology, 45, 487-498. doi: CrossRefGoogle Scholar
  8. Hinojosa, J. A., Méndez-Bértolo, C., & Pozo, M. A. (2010). Looking at emotional words is not the same as reading emotional words: Behavioral and neural correlates. Psychophysiology, 47, 748-757. doi: PubMedGoogle Scholar
  9. Hoffmann, P., & Woollams, A. M. (2015). Opposing effects of semantic diversity in lexical and semantic relatedness decisions. Journal of Experimental Psychology: Human Perception and Performance, 41, 385-402. doi: Google Scholar
  10. Kaltwasser, L., Ries, S., Wommer, W., Knight, R. T., & Willems, R. M. (2013). Independence of valence and reward in emotional word processing: electrophysiological evidence. Frontiers in psychology, 4, Article 168. doi:
  11. Kanske, P., & Kotz, S. A. (2007). Concreteness in emotional words: ERP evidence from a hemifield study. Brain Research, 1148, 138-148. doi: CrossRefPubMedGoogle Scholar
  12. Keuper, K., Zwanzger, P., Nordt, M., Eden, A., Laeger, I., Zwitserlood, P., . . . Dobel, C. (2012). How ‘love’ and ‘hate’ differ from ‘sleep’: Using combined electro/magnetoencephalographic data to reveal the sources of early cortical responses to emotional words. Human Brain Mapping, 35, 875-888. doi: CrossRefPubMedGoogle Scholar
  13. Kissler, J., & Herbert, C. (2013). Emotion, Etmnooi, or Emitoon? – Faster lexical access to emotional than to neutral words during reading. Biological Psychology, 92, 464-479. doi: CrossRefPubMedGoogle Scholar
  14. Kissler, J., Herbert, C., Peyk, P., & Junghofer, M. (2007). Buzzwords. Early corticle responses to emotional words during reading. Psychological Science, 18, 475-480. doi: CrossRefPubMedGoogle Scholar
  15. Kissler, J., Herbert, C., Winkler, I., & Junghofer, M. (2009). Emotion and attention in visual word processing—An ERP study. Biological Psychology, 80, 75-83. doi: CrossRefPubMedGoogle Scholar
  16. Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2008). Upper alpha ERD and absolute power: their meaning for memory performance. In C. Neuper & W. Klimesch (Eds.), Progress in brain research, Vol 159 (pp. 151-165). Amsterdam: Elsevier.Google Scholar
  17. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews, 53, 63-88. doi: CrossRefPubMedGoogle Scholar
  18. Knösche, T. R., & Bastiaansen, C. M. (2002). On the time resolution of event-related desynchronization: a simulation study. Clinical Neurophysiology, 113, 754-763. doi: CrossRefPubMedGoogle Scholar
  19. Kounios, J., & Holcomb, P. J. (1994). Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 804-823. doi: PubMedGoogle Scholar
  20. Kousta, S.-T., Vigliocco, G., Del Campo, E., Vinson, D. P., & Andrews, M. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 14-34. doi: CrossRefGoogle Scholar
  21. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621-647. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and semantic basis of semantic cognition. Nature Reviews Neuroscience, 18, 42-55. doi: CrossRefGoogle Scholar
  23. Lefebvre, C. D., Marchand, Y., Eskes, G. A., & Connolly, J. F. (2005). Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology, 116, 1665-1680. doi: CrossRefPubMedGoogle Scholar
  24. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177-190. doi: CrossRefPubMedGoogle Scholar
  25. Miendlarzewska, E. A., van Elswijk, G., Cannistraci, C. V., & van Ee, R. (2013). Working memory load attenuates emotional enhancement in recognition memory. Frontiers in psychology, 4, 112. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  26. Olofsson, J. K., Nordin, S., Sequeria, H., & Polich, J. (2008). Affective picture processing: An integrative review of ERP findings. Biological Psychology, 77, 247-265. doi: CrossRefPubMedGoogle Scholar
  27. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, Article ID: 156869. doi:
  28. Paivio, A. (1986). Mental representations: A dual coding approach. Oxford England: Oxford University Press.Google Scholar
  29. Palazova, M., Mantill, K., Sommer, W., & Schacht, A. (2011). Are effects of emotion in single words non-lexical? Evidence from event-related brain potentials. Neuropsychologia, 49, 2766-2775. doi: CrossRefPubMedGoogle Scholar
  30. Palazova, M., Sommer, W., & Schact, A. (2013). Interplay of emotional valence and concreteness in word processing: An event-related potential study with verbs. Brain and Language, 125, 264-271. doi: CrossRefPubMedGoogle Scholar
  31. Parkes, L., Perry, C., & Goodin, P. (2016). Examining the N400m in affectively negative sentences: A magnetoencephalography study. Psychophysiology, 53, 689-704. doi: CrossRefPubMedGoogle Scholar
  32. Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220-244. doi: CrossRefPubMedGoogle Scholar
  33. Perry, C. (2018). Testing predictions about the processing of word stress in reading using event-related potentials. Language, Cognition and Neuroscience, 33, 424-442. doi: CrossRefGoogle Scholar
  34. Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13, 160-166. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  35. Reynolds, M., & Besner, D. (2006). Reading aloud is not automatic: Processing capacity is required to generate a phonological code from print. Journal of Experimental Psychology: Human Perception and Performance, 32, 1303-1323. doi: Scholar
  36. Schacht, A., & Sommer, W. (2009). Time course and task dependence of emotion effects in word processing. Cognitive, Affective, & Behavioral Neuroscience, 9, 28-43. doi: CrossRefGoogle Scholar
  37. Schack, B., Weiss, S., & Rappelsberger, P. (2003). Cerebral information transfer during word processing: Where and when does it occur and how fast is it? Human Brain Mapping, 19, 18-36. doi: CrossRefPubMedGoogle Scholar
  38. Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2004). The selective processing of briefly presented affective pictures: An ERP analysis. Psychophysiology, 41, 441-449. doi:j.1469-8986.2004.00174.xCrossRefPubMedGoogle Scholar
  39. Scott, G. G., O'Donnell, P. J., Leuthold, H., & Sereno, S. C. (2009). Early emotion word processing: Evidence from event-related potentials. Biological Psychology, 80, 95-104. doi: CrossRefPubMedGoogle Scholar
  40. Vigliocco, G., Kousta, S. T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2014). The neural representation of abstract words: the role of emotion. Cerebral Cortex, 24, 1767-1777. doi: CrossRefPubMedGoogle Scholar
  41. Vuilleumier, P. (2005). How brains beware: neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585-594. doi: CrossRefPubMedGoogle Scholar
  42. Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45, 1191-1207. doi: CrossRefPubMedGoogle Scholar
  43. Xu, X., Kang, C., Sword, K., & Guo, T. (2017). Are emotions abstract or concrete? Experimental Psychology, 64, 315-324. doi: CrossRefPubMedGoogle Scholar
  44. Yao, Z., Yu, D., Wang, L., Zhu, X., Guo, J., & Wang, Z. (2016). Effects of valence and arousal on emotional word processing are modulated by concreteness: Behavioral and ERP evidence from a lexical decision task. International Journal of Psychophyisology, 110, 231-242. doi: CrossRefGoogle Scholar
  45. Zhang, Q., Guo, C.-y., Ding, J.-h., & Wang, Z.-y. (2006). Concreteness effects in the processing of Chinese words. Brain and Language, 96, 59-68. doi: CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Conrad Perry
    • 1
    Email author
  • Aaron T. Willison
    • 1
  • Megan K. Walker
    • 1
  • Madeleine C. Nankivell
    • 1
  • Lee M. Lawrence
    • 1
  • Alexander Thomas
    • 1
  1. 1.Faculty of Health, Arts and Design, Department of Psychological ScienceSwinburne University of TechnologyHawthornAustralia

Personalised recommendations