Advertisement

Age-related variability in decision-making: Insights from neurochemistry

  • Anne S. BerryEmail author
  • William J. Jagust
  • Ming Hsu
Article

Abstract

Despite dopamine’s significant role in models of value-based decision-making and findings demonstrating loss of dopamine function in aging, evidence of systematic changes in decision-making over the life span remains elusive. Previous studies attempting to resolve the neural basis of age-related alteration in decision-making have typically focused on physical age, which can be a poor proxy for age-related effects on neural systems. There is growing appreciation that aging has heterogeneous effects on distinct components of the dopamine system within subject in addition to substantial variability between subjects. We propose that some of the conflicting findings in age-related effects on decision-making may be reconciled if we can observe the underlying dopamine components within individuals. This can be achieved by incorporating in vivo imaging techniques including positron emission tomography (PET) and neuromelanin-sensitive MR. Further, we discuss how affective factors may contribute to individual differences in decision-making performance among older adults. Specifically, we propose that age-related shifts in affective attention (“positivity effect”) can, in some cases, counteract the impact of altered dopamine function on specific decision-making processes, contributing to variability in findings. In an effort to provide clarity to the field and advance productive hypothesis testing, we propose ways in which in vivo dopamine imaging can be leveraged to disambiguate dopaminergic influences on decision-making, and suggest strategies for assessing individual differences in the contribution of affective attentional focus.

Keywords

decision-making dopamine aging positivity effect PET 

Notes

Acknowledgements

We thank Ben Inglis, Joseph R. Winer, and Anne Maass for their work developing the neuromelanin-sensitive MR Protocol. Neuromelanin-sensitive MR data were collected at the Henry H. Wheeler Jr. Brain Imaging Center. This work was supported by National Institute on Aging Grants K99 AG058748 (A.S.B.) and R01 AG044292 (W.J.J.), National Science Foundation award BSC-0821855, and the Alzheimer’s Association Research Fellowship (A.S.B.).

References

  1. Agarwal, S., Driscoll, J. C., Gabaix, X., & Laibson, D. (2009). The age of reason: Financial decisions over the life-cycle with implications for regulation. Rochester, NY: Social Science Research Network.Google Scholar
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.  https://doi.org/10.1146/annurev.ne.09.030186.002041 Google Scholar
  3. Arazi, A., Gonen-Yaacovi, G., & Dinstein, I. (2017). The magnitude of trial-by-trial neural variability is reproducible over time and across tasks in humans. eNeuro, 4.  https://doi.org/10.1523/ENEURO.0292-17.2017
  4. Armbruster-Genç, D. J. N., Ueltzhöffer, K., & Fiebach, C. J. (2016). Brain signal variability differentially affects cognitive flexibility and cognitive stability. The Journal of Neuroscience, 36, 3978–3987.  https://doi.org/10.1523/JNEUROSCI.2517-14.2016 Google Scholar
  5. Bäckman, L., Ginovart, N., Dixon, R. A., Robins Wahlin, T.-B., Wahlin, Å., Halldin, C., & Fardeet, L. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157, 635–637.  https://doi.org/10.1176/ajp.157.4.635 Google Scholar
  6. Bäckman, L., Lindenberger, U., Li, S.-C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience & Biobehavioral Reviews, 34, 670–677.  https://doi.org/10.1016/j.neubiorev.2009.12.008 Google Scholar
  7. Bäckman, L., Nyberg, L., Soveri, A., Johansson, J., Andersson, M., Dahlin, E., … Rinne, J. O. (2011). Effects of working-memory training on striatal dopamine release. Science, 333, 718.  https://doi.org/10.1126/science.1204978 Google Scholar
  8. Bäckman, L., Waris, O., Johansson, J., Andersson, M., Rinne, J. O., Alakurtti, K., … Nyberg, L. (2017). Increased dopamine release after working-memory updating training: Neurochemical correlates of transfer. Scientific Reports, 7, 7160.  https://doi.org/10.1038/s41598-017-07577-y Google Scholar
  9. Barber, S. J., Opitz, P. C., Martins, B., Sakaki, M., & Mather, M. (2016). Thinking about a limited future enhances the positivity of younger and older adults’ recall: Support for socioemotional selectivity theory. Memory & Cognition, 44, 869–882.  https://doi.org/10.3758/s13421-016-0612-0 Google Scholar
  10. Berry, A. S., Shah, V. D., Baker, S. L., Vogel, J. W., O’Neil, J. P., Janabi, M., … Jagust, W. J. (2016). Aging affects dopaminergic neural mechanisms of cognitive flexibility. The Journal of Neuroscience, 36,12559–12569.  https://doi.org/10.1523/JNEUROSCI.0626-16.2016 Google Scholar
  11. Berry, A. S., Shah, V. D., Furman, D. J., White, R. L., III, Baker, S. L., O’Neil, J. P., … Jagust, W. J. (2018). Dopamine synthesis capacity is associated with D2/3 receptor binding but not dopamine release. Neuropsychopharmacology, 43, 1201–1211.  https://doi.org/10.1038/npp.2017.180 Google Scholar
  12. Berry, A. S., Shah, V. D., & Jagust, W. J. (2018). The influence of dopamine on cognitive flexibility is mediated by functional connectivity in young but not older adults. Journal of Cognitive Neuroscience, 30, 1330–1344.  https://doi.org/10.1162/jocn_a_01286 Google Scholar
  13. Best, R., & Charness, N. (2015). Age differences in the effect of framing on risky choice: A meta-analysis. Psychology and Aging, 30, 688–698.  https://doi.org/10.1037/a0039447 Google Scholar
  14. Betts, M. J., Cardenas-Blanco, A., Kanowski, M., Jessen, F., & Düzel, E. (2017). In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. NeuroImage, 163, 150–159.  https://doi.org/10.1016/j.neuroimage.2017.09.042 Google Scholar
  15. Braskie, M. N., Wilcox, C. E., Landau, S. M., O’Neil, J. P., Baker, S. L., Madison, C. M., … Jagust, W. J. (2008). Relationship of striatal dopamine synthesis capacity to age and cognition. The Journal of Neuroscience, 28, 14320–14328.  https://doi.org/10.1523/JNEUROSCI.3729-08.2008 Google Scholar
  16. Carstensen, L. L. (2006). The influence of a sense of time on human development. Science, 312, 1913–1915.  https://doi.org/10.1126/science.1127488 Google Scholar
  17. Cepeda, C., André, V. M., Yamazaki, I., Wu, N., Kleiman-Weiner, M., & Levine, M. S. (2008). Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. European Journal of Neuroscience, 27, 671–682.  https://doi.org/10.1111/j.1460-9568.2008.06038.x Google Scholar
  18. Chou, K.-L., Lee, T. M. C. , & Ho, A. H. Y. (2007). Does mood state change risk taking tendency in older adults? Psychology and Aging, 22, 310–318.  https://doi.org/10.1037/0882-7974.22.2.310 Google Scholar
  19. Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q., Düzel, E., & Dolan, R. J. (2013). Dopamine restores reward prediction errors in old age. Nature Neuroscience, 16, 648–653.  https://doi.org/10.1038/nn.3364 Google Scholar
  20. Chowdhury, R., Guitart-Masip, M., Lambert, C., Dolan, R. J., & Düzel, E. (2013). Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals. Neurobiology and Aging, 34, 2261–2270.  https://doi.org/10.1016/j.neurobiolaging.2013.03.030 Google Scholar
  21. Clewett, D. V., Huang, R., Velasco, R., Lee, T.-H., & Mather, M. (2018). Locus coeruleus activity strengthens prioritized memories under arousal. The Journal of Neuroscience, 38, 1558–1574.  https://doi.org/10.1523/JNEUROSCI.2097-17.2017 Google Scholar
  22. Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99, 45–77.Google Scholar
  23. Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience, 35, 1024–1035.  https://doi.org/10.1111/j.1460-9568.2011.07980.x Google Scholar
  24. Costa, V. D., Dal Monte, O., Lucas, D. R., Murray, E. A., & Averbeck, B. B. (2016). Amygdala and ventral striatum make distinct contributions to reinforcement learning. Neuron, 92, 505–517.  https://doi.org/10.1016/j.neuron.2016.09.025 Google Scholar
  25. Cox, K. M., Aizenstein, H. J., & Fiez, J. A. (2008). Striatal outcome processing in healthy aging. Cognitive, Affective, & Behavioral Neuroscience, 8, 304–317.  https://doi.org/10.3758/CABN.8.3.304 Google Scholar
  26. Cox, S. M. L., Frank, M. J., Larcher, K., Fellows, L. K, Clark, C. A., Leyton, M., & Dagher, A. (2015). Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes. NeuroImage, 109, 95–101.  https://doi.org/10.1016/j.neuroimage.2014.12.070 Google Scholar
  27. Culbreth, A. J., Westbrook, A., Daw, N. D., Botvinick, M., & Barch, D. M. (2016). Reduced model-based decision-making in schizophrenia. Journal of Abnormal Psychology, 125, 777–787.  https://doi.org/10.1037/abn0000164 Google Scholar
  28. Dang, L. C., Castrellon, J. J., Perkins, S. F., Le, N. T., Cowan, R. L., Zald, D. H., & Samanez-Larkin, G. R. (2017). Reduced effects of age on dopamine D2 receptor levels in physically active adults. NeuroImage, 148, 123–129.  https://doi.org/10.1016/j.neuroimage.2017.01.018 Google Scholar
  29. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69, 1204–1215.  https://doi.org/10.1016/j.neuron.2011.02.027 Google Scholar
  30. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711.  https://doi.org/10.1038/nn1560 Google Scholar
  31. de Boer, L., Axelsson, J., Riklund K., Nyberg, L., Dayan. P., Bäckman, L., & Guitart-Masipk M. (2017). Attenuation of dopamine-modulated prefrontal value signals underlies probabilistic reward learning deficits in old age. eLife, 6.  https://doi.org/10.7554/eLife.26424
  32. Dejesus, O. T., Endres, C. J., Shelton, S. E., Nickles, R. J., & Holden, J. E. (2001). Noninvasive assessment of aromatic L-amino acid decarboxylase activity in aging rhesus monkey brain in vivo. Synapse, 39, 58–63.  https://doi.org/10.1002/1098-2396(20010101)39:1<58::AID-SYN8>3.0.CO;2-B Google Scholar
  33. Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H.-J., Grace, A. A., … Schlagenhauf, F. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision-making. Proceedings of the National Academy of Sciences of the United States of America, 112, 1595–1600.  https://doi.org/10.1073/pnas.1417219112 Google Scholar
  34. Dickinson, A., & Balleine, B. (2002). The role of learning in the operation of motivational systems. In H. Pashler, S. Yantis, D. Medin, R. Gallistel, & J. T. Wixted (Eds.), Stevens’ handbook of experimental psychology.  https://doi.org/10.1002/0471214426.pas0312
  35. Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80, 312–325.  https://doi.org/10.1016/j.neuron.2013.09.007 Google Scholar
  36. Dolcos, S., Katsumi, Y., & Dixon, R. A. (2014). The role of arousal in the spontaneous regulation of emotions in healthy aging: An fMRI investigation. Frontiers in Psychology, 5, 681.  https://doi.org/10.3389/fpsyg.2014.00681 Google Scholar
  37. Doll, B. B., Bath, K. G., Daw, N. D., & Frank, M. J. (2016). Variability in dopamine genes dissociates model-based and model-free reinforcement learning. Journal of Neuroscience, 36, 1211–1222.  https://doi.org/10.1523/JNEUROSCI.1901-15.2016 Google Scholar
  38. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.  https://doi.org/10.1016/S0893-6080(99)00046-5 Google Scholar
  39. Dreher, J.-C., Meyer-Lindenberg, A., Kohn, P., & Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences of the United States of America, 105, 15106–15111.  https://doi.org/10.1073/pnas.0802127105 Google Scholar
  40. Endres, C. J., Kolachana, B. S., Saunders, R. C., Su, T., Weinberger, D., Breier, A., … Carson, R. E. (1997). Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. Journal of Cerebral Blood Flow & Metabolism, 17, 932–942.  https://doi.org/10.1097/00004647-199709000-00002 Google Scholar
  41. Enochs, W. S., Hyslop, W. B., Bennett, H. F., Brown, R. D. 3rd, Koenig, S. H., & Swartz, H. M. (1989). Sources of the increased longitudinal relaxation rates observed in melanotic melanoma: An in vitro study of synthetic melanins. Investigative Radiology, 24, 794–804.Google Scholar
  42. Eppinger, B., Hämmerer, D., & Li, S.-C. (2011). Neuromodulation of reward-based learning and decision-making in human aging. Annals of the New York Academy of Sciences, 1235, 1–17.  https://doi.org/10.1111/j.1749-6632.2011.06230.x Google Scholar
  43. Eppinger, B., Herbert, M., & Kray, J. (2010). We remember the good things: Age differences in learning and memory. Neurobiology of Learning and Memory, 93, 515–521.  https://doi.org/10.1016/j.nlm.2010.01.009 Google Scholar
  44. Eppinger, B., Kray, J., Mock, B., & Mecklinger, A. (2008). Better or worse than expected? Aging, learning, and the ERN. Neuropsychologia, 46, 521–539.  https://doi.org/10.1016/j.neuropsychologia.2007.09.001 Google Scholar
  45. Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced striatal responses to reward prediction errors in older compared with younger adults. Journal of Neuroscience, 33, 9905–9912.  https://doi.org/10.1523/JNEUROSCI.2942-12.2013 Google Scholar
  46. Eppinger, B., Walter, M., Heekeren, H. R., & Li, S.-C. (2013). Of goals and habits: Age-related and individual differences in goal-directed decision-making. Frontiers in Neuroscience, 7, 253.  https://doi.org/10.3389/fnins.2013.00253 Google Scholar
  47. Eppinger, B., Walter, M., & Li, S.-C. (2017). Electrophysiological correlates reflect the integration of model-based and model-free decision information. Cognitive, Affective, & Behavioral Neuroscience, 17, 406–421.  https://doi.org/10.3758/s13415-016-0487-3 Google Scholar
  48. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871–882.  https://doi.org/10.1016/j.neuron.2006.07.029 Google Scholar
  49. Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114, 2283–2301.  https://doi.org/10.1093/brain/114.5.2283 Google Scholar
  50. Floresco, S. B. (2013). Prefrontal dopamine and behavioral flexibility: Shifting from an “inverted-U” toward a family of functions. Frontiers in Neuroscience, 7, 62.  https://doi.org/10.3389/fnins.2013.00062 Google Scholar
  51. Frank, M. J., & Kong, L. (2008). Learning to avoid in older age. Psychology and Aging, 23, 392–398.  https://doi.org/10.1037/0882-7974.23.2.392 Google Scholar
  52. Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943.  https://doi.org/10.1126/science.1102941 Google Scholar
  53. Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2010). Blood oxygen level-dependent signal variability is more than just noise. Journal of Neuroscience, 30, 4914–4921.  https://doi.org/10.1523/JNEUROSCI.5166-09.2010 Google Scholar
  54. Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The importance of being variable. Journal of Neuroscience, 31, 4496–4503.  https://doi.org/10.1523/JNEUROSCI.5641-10.2011 Google Scholar
  55. Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S., Lindenberger, U., McIntosh, A. R., & Grady, C. R. (2013). Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience & Biobehavioral Reviews, 37, 610–624.  https://doi.org/10.1016/j.neubiorev.2013.02.015 Google Scholar
  56. Gershman, S. J., & Daw, N. D. (2017). Reinforcement learning and episodic memory in humans and animals: An integrative framework. Annual Review of Psychology, 68,101–128.  https://doi.org/10.1146/annurev-psych-122414-033625 Google Scholar
  57. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., & Daw, N. D. (2016). Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife, 5.  https://doi.org/10.7554/eLife.11305
  58. Glass, B. D., & Osman, M. (2017). Positive explorers: modeling dynamic control in normal aging. Aging, Neuropsychology, and Cognition, 24, 62–79.  https://doi.org/10.1080/13825585.2016.1171290 Google Scholar
  59. Goranson, A., Ritter, R. S., Waytz, A., Norton, M. I., & Grayet, K. (2017). Dying is unexpectedly positive. Psychological Science, 28, 988–999.  https://doi.org/10.1177/0956797617701186 Google Scholar
  60. Gorlick, M. A., Giguère, G., Glass, B. D., Nix, B. N., Mather, M., & Maddox, W. T. (2013). Attenuating age-related learning deficits: Emotional valenced feedback interacts with task complexity. Emotion, 13, 250–261.  https://doi.org/10.1037/a0030071 Google Scholar
  61. Gupta, R., Koscik, T. R., Bechara, A., & Tranel, D. (2011). The amygdala and decision-making. Neuropsychologia, 49, 760–766.  https://doi.org/10.1016/j.neuropsychologia.2010.09.029 Google Scholar
  62. Hämmerer, D., Callaghan, M. F., Hopkins, A., Kosciessa, J., Betts, M., Cardenas-Blanco, A., … Düzel, E. (2018). Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proceedings of the National Academy of Sciences of the United States of America, 115, 2228–2233.  https://doi.org/10.1073/pnas.1712268115 Google Scholar
  63. Hemby, S. E., Trojanowski, J. Q., & Ginsberg, S. D. (2003). Neuron-specific age-related decreases in dopamine receptor subtype mRNAs. The Journal of Comparative Neurology, 456, 176–183.  https://doi.org/10.1002/cne.10525 Google Scholar
  64. Hirschmüller, S., & Egloff, B. (2015). Positive emotional language in the final words spoken directly before execution. Frontiers in Psychology, 6, 1985.  https://doi.org/10.3389/fpsyg.2015.01985 Google Scholar
  65. Hoekzema, E., Herance, R., Rojas, S., Pareto, D., Abad, S., Jiménez, X., … Gispert. J. D. (2010). The effects of aging on dopaminergic neurotransmission: A microPET study of [11C]-raclopride binding in the aged rodent brain. Neuroscience, 171, 1283–1286.  https://doi.org/10.1016/j.neuroscience.2010.10.012 Google Scholar
  66. Hume, S. P., Myers, R., Bloomfield, P. M., Opacka-Juffry, J., Cremer, J. E., Ahier, R. G., … Lammertsma, A. A. (1992). Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse, 12, 47–54.  https://doi.org/10.1002/syn.890120106 Google Scholar
  67. Ingram, D. K., Chefer, S., Matochik, J., Weed, J., Roth, G. S., London, E. D., & Lane, M. A. (2001). Aging and caloric restriction in nonhuman primates: Behavioral and in vivo brain imaging studies. Annals of the New York Academy of Sciences, 928, 316–326Google Scholar
  68. Ito, H., Kawaguchi, H., Kodaka, F., Takuwa, H., Ikoma, Y., Shimada, H., … Suhara, T. (2017). Normative data of dopaminergic neurotransmission functions in substantia nigra measured with MRI and PET: Neuromelanin, dopamine synthesis, dopamine transporters, and dopamine D2 receptors. NeuroImage, 158, 12–17.  https://doi.org/10.1016/j.neuroimage.2017.06.066 Google Scholar
  69. Jonasson, L. S., Axelsson, J., Riklund, K., Braver, T. S., Ögren, M., Bäckman, L., & Nyberg, L. (2014). Dopamine release in nucleus accumbens during rewarded task switching measured by [11C]raclopride. NeuroImage, 99, 357–364.  https://doi.org/10.1016/j.neuroimage.2014.05.047 Google Scholar
  70. Karrer, T. M., Josef, A. K., Mata, R., Morris, E. D., & Samanez-Larkin, G. R. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis. Neurobiology of Aging, 57, 36–46.  https://doi.org/10.1016/j.neurobiolaging.2017.05.006 Google Scholar
  71. Kim, J. J., & Jung, M. W. (2018). Fear paradigms: The times they are a-changin’. Current Opinion in Behavioral Sciences, 24, 38–43.  https://doi.org/10.1016/j.cobeha.2018.02.007 Google Scholar
  72. Kim, K. M., Baratta, M. V., Yang, A., Lee, D., Boyden, E. S., & Fiorillo, C. D. (2012). Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLOS ONE, 7, e33612.  https://doi.org/10.1371/journal.pone.0033612 Google Scholar
  73. Kircanski, K., Notthoff, N., DeLiema, M., Samanez-Larkin, G. R., Shadel, D., Mottola, G., … Gotlib, I. H. (2018). Emotional arousal may increase susceptibility to fraud in older and younger adults. Psychology and Aging , 33, 325–337.  https://doi.org/10.1037/pag0000228 Google Scholar
  74. Klostermann, E. C., Braskie, M. N., Landau, S. M., O’Neil, J. P., & Jagust, W. J. (2012). Dopamine and frontostriatal networks in cognitive aging. Neurobiology of Aging, 33, 623.  https://doi.org/10.1016/j.neurobiolaging.2011.03.002 Google Scholar
  75. Knight, M., Seymour, T. L., Gaunt, J. T., Baker, C., Nesmith, K., & Mather, M. (2007). Aging and goal-directed emotional attention: Distraction reverses emotional biases. Emotion, 7, 705–714.  https://doi.org/10.1037/1528-3542.7.4.705 Google Scholar
  76. Knutson, B., Samanez-Larkin, G. R., & Kuhnen, C. M. (2011). Gain and loss learning differentially contribute to life financial outcomes. PLOS ONE, 6, e24390.  https://doi.org/10.1371/journal.pone.0024390 Google Scholar
  77. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.  https://doi.org/10.1038/30498 Google Scholar
  78. Korniotis, G. M., & Kumar, A. (2010). Do older investors make better investment decisions? Review of Economics and Statistics, 93, 244–265.  https://doi.org/10.1162/REST_a_00053 Google Scholar
  79. Kravitz, A. V., Tye, L. D., & Kreitzer, A. C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nature Neuroscience, 15, 816–818.  https://doi.org/10.1038/nn.3100 Google Scholar
  80. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International Affective Picture System (IAPS): Affective ratings of pictures and instruction manual (Tech. Rep. A-8). Gainsville, FL: University of Florida.Google Scholar
  81. Laruelle, M., Iyer, R. N., al-Tikriti, M. S., Zea-Ponce, Y., Malison, R., Zoghbi, S. S., … Bradberry, C. W. (1997). Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse, 25, 1–14.  https://doi.org/10.1002/(SICI)1098-2396(199701)25:1<1::AID-SYN1>3.0.CO;2-H Google Scholar
  82. Li, S. C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Science, 5, 479–486.Google Scholar
  83. Li, Y., Gao, J., Enkavi, A. Z., Zaval, L., Weber, E. U., & Johnson, E. J. (2015). Sound credit scores and financial decisions despite cognitive aging. Proceedings of the National Academy of Sciences of the United States of America, 112, 65–69.  https://doi.org/10.1073/pnas.1413570112 Google Scholar
  84. Lighthall, N. R., Gorlick, M. A., Schoeke, A., Frank, M. J., & Mather, M. (2013). Stress modulates reinforcement learning in younger and older adults. Psychology and Aging, 28, 35–46.  https://doi.org/10.1037/a0029823 Google Scholar
  85. Ma, S. Y., Ciliax, B. J., Stebbins, G., Jaffar, S., Joyce, J. N., Cochran, E. J., … Mufson, E. J. (1999). Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. The Journal of Comparative Neurology, 409, 25–37.Google Scholar
  86. Ma, Y.-Y., Cepeda, C., Chatta, P., Franklin, L., Evans, C. J., & Levine, M. S. (2012). Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons. ASN Neuro, 4(2).  https://doi.org/10.1042/AN20110063
  87. Maass, A., Lockhart, S. N., Harrison, T. M., Bell, R. K., Mellinger, T., Swinnerton, K., … Jagust, J. (2018). Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. The Journal of Neuroscience, 38, 530–543.  https://doi.org/10.1523/JNEUROSCI.2028-17.2017 Google Scholar
  88. MacDonald, S. W. S., Karlsson, S., Rieckmann, A., Nyberg, L., & Backman, L. (2012). Aging-related increases in behavioral variability: Relations to losses of dopamine D1 receptors. The Journal of Neuroscience, 32, 8186–8191.  https://doi.org/10.1523/JNEUROSCI.5474-11.2012 Google Scholar
  89. Madras, B. K., Meltzer, P. C., Liang, A. Y., Elmaleh, D. R., Babich, J., & Fischman, A. J. (1998). Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse, 29, 93–104.  https://doi.org/10.1002/(SICI)1098-2396(199806)29:2<93::AID-SYN1>3.0.CO;2-5 Google Scholar
  90. Mamerow, L., Frey, R., & Mata, R. (2016.) Risk taking across the life span: A comparison of self-report and behavioral measures of risk taking. Psychology and Aging , 31, 711–723.  https://doi.org/10.1037/pag0000124 Google Scholar
  91. Martins, B., Florjanczyk, J., Jackson, N. J., Gatz, M., & Mather, M. (2018). Age differences in emotion regulation effort: Pupil response distinguishes reappraisal and distraction for older but not younger adults. Psychology and Aging, 33, 338–349.  https://doi.org/10.1037/pag0000227 Google Scholar
  92. Mata, R., Josef, A. K., Samanez-Larkin, G. R., & Hertwig, R. (2011). Age differences in risky choice: A meta-analysis. Annals of the New York Academy of Sciences, 1235, 18–29.  https://doi.org/10.1111/j.1749-6632.2011.06200.x Google Scholar
  93. Mather, M. (2006). A review of decision-making processes: Weighing the risks and benefits of aging. In L. L. Carstensen & C. R. Hartel (Eds.), When I’m 64. Washington, DC: National Academies Press.Google Scholar
  94. Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213–238.  https://doi.org/10.1146/annurev-psych-122414-033540 Google Scholar
  95. Mather, M., Canli, T., English, T., Whitfield, S., Wais, P., Ochsner, K., … Carstensen, L. L. (2004). Amygdala responses to emotionally valenced stimuli in older and younger adults. Psychological Science, 15, 259–263.  https://doi.org/10.1111/j.0956-7976.2004.00662.x Google Scholar
  96. Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Science, 9, 496–502.  https://doi.org/10.1016/j.tics.2005.08.005 Google Scholar
  97. Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39.  https://doi.org/10.1017/S0140525X15000667
  98. Mather, M., & Knight, M. (2005). Goal-directed memory: The role of cognitive control in older adults’ emotional memory. Psychology and Aging, 20, 554–570.  https://doi.org/10.1037/0882-7974.20.4.554 Google Scholar
  99. McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339–346.Google Scholar
  100. Mell, T., Heekeren, H. R., Marschner, A, Wartenburger, I., Villringer, A., & Reischies, F. M. (2005). Effect of aging on stimulus-reward association learning. Neuropsychologia, 43, 554–563.  https://doi.org/10.1016/j.neuropsychologia.2004.07.010 Google Scholar
  101. Mell, T., Wartenburger, I., Marschner, A., Villringer, A., Reischies, F. M., & Heekeren, H. R. (2009). Altered function of ventral striatum during reward-based decision-making in old age. Frontiers in Human Neuroscience, 3, 34.  https://doi.org/10.3389/neuro.09.034.2009 Google Scholar
  102. Mesco, E. R., Joseph, J. A., & Roth, G. S. (1992). Selective susceptibility of cultured striatal neurons to kainic acid. Journal of Neuroscience Research, 31, 341–345.  https://doi.org/10.1002/jnr.490310216 Google Scholar
  103. Mienaltowski, A. (2011). Everyday problem solving across the adult life span: Solution diversity and efficacy. Annals of the New York Academy of Sciences, 1235, 75–85.  https://doi.org/10.1111/j.1749-6632.2011.06207.x Google Scholar
  104. Mohr, P. N. C., & Nagel, I. E. (2010). Variability in brain activity as an individual difference measure in neuroscience? The Journal of Neuroscience, 30, 7755–7757.  https://doi.org/10.1523/JNEUROSCI.1560-10.2010 Google Scholar
  105. Morris, E. D., Endres, C. J., Schmidt, K. C., Christian, B. T., Muzic, R. F., & Fisher, R. E. (2004). Kinetic modeling in positron emission tomography. In Emission tomography: The fundamentals of PET and SPECT (pp. 499–540).  https://doi.org/10.1016/B978-012744482-6.50026-0
  106. Muñoz, P., Huenchuguala, S., Paris, I., & Segura-Aguilar, J. (2012). Dopamine oxidation and autophagy. Parkinson’s Disease, 2012, 920953.  https://doi.org/10.1155/2012/920953 Google Scholar
  107. Nashiro, K., Sakaki, M., Braskie, M. N., & Mather, M. (2017). Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiology of Aging, 54, 152–162.  https://doi.org/10.1016/j.neurobiolaging.2017.03.003 Google Scholar
  108. Nyberg, L., Karalija, N., Salami, A., Andersson, M., Wåhlin, A., Kaboovand, N., … Bäckman, L. (2016). Dopamine D2 receptor availability is linked to hippocampal-caudate functional connectivity and episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 113, 7918–7923.  https://doi.org/10.1073/pnas.1606309113 Google Scholar
  109. O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454.  https://doi.org/10.1126/science.1094285 Google Scholar
  110. O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38, 329–337.Google Scholar
  111. Orsini, C. A., Moorman, D. E., Young, J. W., Setlow, B., & Floresco, S. B. (2015). Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neuroscience & Biobehavioral Reviews, 58, 147–167.  https://doi.org/10.1016/j.neubiorev.2015.04.009 Google Scholar
  112. Otto, A. R., Gershman, S. J., Markman, A. B., & Daw, N. D. (2013). The curse of planning: Dissecting multiple reinforcement-learning systems by taxing the central executive. Psychological Science, 24, 751–761.  https://doi.org/10.1177/0956797612463080 Google Scholar
  113. Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A., & Daw, N. D. (2013). Working-memory capacity protects model-based learning from stress. Proceedings of the National Academy of Sciences of the United States of America, 110, 20941–20946.  https://doi.org/10.1073/pnas.1312011110 Google Scholar
  114. Pasion, R., Gonçalves, A. R., Fernandes, C., Ferreira-Santos, F., Barbosa, F., & Marques-Teixeira, J. (2017). Meta-analytic evidence for a reversal learning effect on the iowa gambling task in older adults. Frontiers in Psychology, 8, 1785.  https://doi.org/10.3389/fpsyg.2017.01785 Google Scholar
  115. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442, 1042–1045.  https://doi.org/10.1038/nature05051 Google Scholar
  116. Pietschmann, M., Endrass, T., Czerwon, B., & Kathmann, N. (2011). Aging, probabilistic learning and performance monitoring. Biological Psychology, 86, 74–82.  https://doi.org/10.1016/j.biopsycho.2010.10.009 Google Scholar
  117. Puig, M. V., Rose, J., Schmidt, R., & Freund, N. (2014). Dopamine modulation of learning and memory in the prefrontal cortex: Insights from studies in primates, rodents, and birds. Frontiers in Neural Circuits, 8.  https://doi.org/10.3389/fncir.2014.00093
  118. Ragland, J. D., Cohen, N. J., Cools, R., Frank, M. J., Hannula, D. E., & Ranganath, C. (2012). CNTRICS imaging biomarkers final task selection: Long-term memory and reinforcement learning. Schizophrenia Bulletin, 38, 62–72.  https://doi.org/10.1093/schbul/sbr168 Google Scholar
  119. Reed, A. E., & Carstensen, L. L. (2012). The theory behind the age-related positivity effect. Frontiers in Psychology, 3, 339.  https://doi.org/10.3389/fpsyg.2012.00339 Google Scholar
  120. Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information. Psychology and Aging, 29, 1–15.  https://doi.org/10.1037/a0035194 Google Scholar
  121. Rieckmann, A., Johnson, K. A., Sperling, R. A., Buckner, R. L., & Hedden, T. (2018). Dedifferentiation of caudate functional connectivity and striatal dopamine transporter density predict memory change in normal aging. Proceedings of the National Academy of Sciences of the United States of America.  https://doi.org/10.1073/pnas.1804641115
  122. Rieckmann, A., Karlsson, S., Karlsson, P., Brehmer, Y., Fischer, H., Farde, L., … Bäckman, L. (2011). Dopamine D1 receptor associations within and between dopaminergic pathways in younger and elderly adults: Links to cognitive performance. Cerebral Cortex, 21, 2023–2032.  https://doi.org/10.1093/cercor/bhq266 Google Scholar
  123. Rinne, J. O., Laihinen, A., Någren, K., Bergman, J., Solin, O., Haaparanta, M., … Rinne, U. K. (1990). PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson’s disease. Journal of Neuroscience Research, 27, 494–499.  https://doi.org/10.1002/jnr.490270409 Google Scholar
  124. Rinne, J. O., Lönnberg, P., & Marjamäki, P. (1990). Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Research, 508, 349–352.Google Scholar
  125. Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J., & Daw, N. D. (2017). Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLOS Computational Biology, 13, e1005768.  https://doi.org/10.1371/journal.pcbi.1005768 Google Scholar
  126. Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., & Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in parkinson’s patients in a dynamic foraging task. Journal of Neuroscience, 29, 15104–15114.  https://doi.org/10.1523/JNEUROSCI.3524-09.2009 Google Scholar
  127. Samanez-Larkin, G. R., Gibbs, S. E. B., Khanna, K., Nielsen, L., Carstensen, L. L., & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10, 787–791.  https://doi.org/10.1038/nn1894 Google Scholar
  128. Samanez-Larkin, G. R., Kuhnen, C. M., Yoo, D. J., & Knutson, B. (2010). Variability in nucleus accumbens activity mediates age-related suboptimal financial risk taking. The Journal of Neuroscience, 30, 1426–1434.  https://doi.org/10.1523/JNEUROSCI.4902-09.2010 Google Scholar
  129. Samanez-Larkin, G. R., Levens, S. M., Perry, L. M., Dougherty, R. F., & Knutson, B. (2012). Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning. The Journal of Neuroscience, 32, 5333–5337.  https://doi.org/10.1523/JNEUROSCI.5756-11.2012 Google Scholar
  130. Samanez-Larkin, G. R., Worthy, D. A., Mata, R., McClure, S. M., & Knutson, B. (2014). Adult age differences in frontostriatal representation of prediction error but not reward outcome. Cognitive, Affective, & Behavioral Neuroscience, 14, 672–682.  https://doi.org/10.3758/s13415-014-0297-4 Google Scholar
  131. Sasaki, M., Shibata, E., Tohyama, K., Kudo, K., Endoh, J., Otsuka, K., & Sakai, A. (2008). Monoamine neurons in the human brain stem: Anatomy, magnetic resonance imaging findings, and clinical implications. Neuroreport, 19, 1649–1654.  https://doi.org/10.1097/WNR.0b013e328315a637 Google Scholar
  132. Sasaki, M., Shibata, E., Tohyama, K., Takahashi, J., Otsuka, K., Tsuchiya, K., … Sakai, A. (2006). Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport, 17, 1215–1218.  https://doi.org/10.1097/01.wnr.0000227984.84927.a7 Google Scholar
  133. Schelp, S. A., Pultorak, K. J., Rakowski, D. R., Gomez, D. M., Krzystyniak, G., Das, R., & Oleson, E. B. (2017). A transient dopamine signal encodes subjective value and causally influences demand in an economic context. Proceedings of the National Academy of Sciences of the United States of America, 114, E11303–E11312.  https://doi.org/10.1073/pnas.1706969114 Google Scholar
  134. Schott, B. H., Niehaus, L., Wittmann, B. C., Schutze, H., Seidenbecher, C. I., Heinze, H.-J., & Duzel, E. (2007). Ageing and early-stage Parkinson’s disease affect separable neural mechanisms of mesolimbic reward processing. Brain, 130, 2412–2424.  https://doi.org/10.1093/brain/awm147 Google Scholar
  135. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599Google Scholar
  136. Seaman, K. L., Brooks, N., Karrer, T. M., Castrellon, J. L., Perkins, S. F., Dang, L. C., … Samanez-Larkin, G. R. (2018). Subjective value representations during effort, probability and time discounting across adulthood. Social Cognitive and Affective Neuroscience, 13, 449–459.  https://doi.org/10.1093/scan/nsy021 Google Scholar
  137. Seaman, K. L., Juarez, E. J., Smith, C., Juarez, E. J., Dang, L. C., Castrellon, J. J., … Samanez-Larkin, G. R. (2018). Differential regional decline in dopamine receptor availability across adulthood: Linear and nonlinear effects of age.  https://doi.org/10.1101/358200
  138. Seeman, P., Bzowej, N. H., Guan, H. C., Bergeron, C., Becker, L. E., Reynolds, G. P., … Tourtellotte, W. W. (1987). Human brain dopamine receptors in children and aging adults. Synapse, 1, 399–404.  https://doi.org/10.1002/syn.890010503 Google Scholar
  139. Sharp, M. E., Foerde, K., Daw, N. D., & Shohamy, D. (2016). Dopamine selectively remediates “model-based” reward learning: A computational approach. Brain, 139, 355–364.  https://doi.org/10.1093/brain/awv347 Google Scholar
  140. Shibata, E., Sasaki, M., Tohyama, K., Otsuka, K., Endoh, J., Terayama, Y, & Sakai, A. (2008). Use of neuromelanin-sensitive MRI to distinguish schizophrenic and depressive patients and healthy individuals based on signal alterations in the substantia nigra and locus ceruleus. Biological Psychiatry, 64, 401–406.  https://doi.org/10.1016/j.biopsych.2008.03.021 Google Scholar
  141. Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Science, 14, 464–472.  https://doi.org/10.1016/j.tics.2010.08.002 Google Scholar
  142. Shohamy, D., & Daw, N. D. (2015). Integrating memories to guide decisions. Current Opinion in Behavioral Sciences, 5, 85–90.  https://doi.org/10.1016/j.cobeha.2015.08.010 Google Scholar
  143. Simon, J. R., Howard, J. H., & Howard, D. V. (2010). Adult age differences in learning from positive and negative probabilistic feedback. Neuropsychology, 24, 534–541.  https://doi.org/10.1037/a0018652 Google Scholar
  144. Smittenaar, P., FitzGerald, T. H. B., Romei, V., Wright, N. D., & Dolan, R. J. (2013). Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free control in humans. Neuron, 80, 914–919.  https://doi.org/10.1016/j.neuron.2013.08.009 Google Scholar
  145. Sojitra, R. B., Lerner, I., Petok, J. R., & Gluck, M. A. (2018). Age affects reinforcement learning through dopamine-based learning imbalance and high decision noise-not through Parkinsonian mechanisms. Neurobiology of Aging, 68, 102–113.  https://doi.org/10.1016/j.neurobiolaging.2018.04.006 Google Scholar
  146. Spaniol, J., Bowen, H. J., Wegier, P., & Grady, C. (2015). Neural responses to monetary incentives in younger and older adults. Brain Research, 1612, 70–82.  https://doi.org/10.1016/j.brainres.2014.09.063 Google Scholar
  147. Steinberg, E. E., Keiflin, R., Boivin, J.R., Witten, I. B., Deisseroth, K., & Janak, P. H. (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16, 966–973.  https://doi.org/10.1038/nn.3413 Google Scholar
  148. Stone, J. M., Morrison, P. D., & Pilowsky, L. S. (2007). Glutamate and dopamine dysregulation in schizophrenia—A synthesis and selective review. Journal of Psychopharmacology, 21, 440–452.  https://doi.org/10.1177/0269881106073126 Google Scholar
  149. Streubel, B., & Kunzmann, U. (2011). Age differences in emotional reactions: arousal and age-relevance count. Psychology and Aging, 26, 966–978.  https://doi.org/10.1037/a0023424 Google Scholar
  150. Strough, J., Karns, T. E., & Schlosnagle, L. (2011). Decision-making heuristics and biases across the life span. Annals of the New York Academy of Sciences, 1235, 57–74.  https://doi.org/10.1111/j.1749-6632.2011.06208.x Google Scholar
  151. Sulzer, D., Mosharov, E., Talloczy, Z., Zucca, F. A., Simon, J. D., & Zecca, L. (2008). Neuronal pigmented autophagic vacuoles: Lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. Journal of Neurochemistry, 106, 24–36.  https://doi.org/10.1111/j.1471-4159.2008.05385.x Google Scholar
  152. Tai, L.-H., Lee, A. M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nature Neuroscience, 15, 1281–1289.  https://doi.org/10.1038/nn.3188 Google Scholar
  153. Tomm, R. J., Tse, M. T., Tobiansky, D. J., Schweitzer, H. R., Soma, K. K., & Floresco, S. B. (2018). Effects of aging on executive functioning and mesocorticolimbic dopamine markers in male Fischer 344 × brown Norway rats. Neurobiology of Aging, 72, 134–146.  https://doi.org/10.1016/j.neurobiolaging.2018.08.020 Google Scholar
  154. Trujillo, P., Summers, P. E., Ferrari, E., Zucca, F. A., Sturini, M., Mainardi, L. T., … Costa, A. (2017). Contrast mechanisms associated with neuromelanin-MRI. Magnetic Resonance in Medicine, 78, 1790–1800.  https://doi.org/10.1002/mrm.26584 Google Scholar
  155. Volkow, N. D., Fowler, J. S., Wang, G.-J., & Swanson, J. M. (2004). Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Molecular Psychiatry, 9, 557–569.  https://doi.org/10.1038/sj.mp.4001507 Google Scholar
  156. Volkow, N. D., Gur, R. C., Wang, G. J., Fowler, J. S., Moberg, P. J., Ding, Y. S., … Logan, J. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349.  https://doi.org/10.1176/ajp.155.3.344 Google Scholar
  157. Voon, V., Derbyshire, K., Rück, C., Irvine, M. A., Worbe, Y., Enander, J., … Bullmore, E. T. (2015). Disorders of compulsivity: a common bias towards learning habits. Molecular Psychiatry, 20, 345–352.  https://doi.org/10.1038/mp.2014.44 Google Scholar
  158. Wakamatsu, K., Tabuchi, K., Ojika, M., Zucca, F. A., Zecca, L., & Ito, S. (2015). Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus. Journal of Neurochemistry, 135, 768–776.  https://doi.org/10.1111/jnc.13237 Google Scholar
  159. Wang, Y., Chan, G. L., Holden, J. E., Dobko, T., Mak, E., Schulzer, M., … Stoessl, J. E. (1998). Age-dependent decline of dopamine D1 receptors in human brain: A PET study. Synapse, 30, 56–61.  https://doi.org/10.1002/(SICI)1098-2396(199809)30:1<56::AID-SYN7>3.0.CO;2-J Google Scholar
  160. West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.  https://doi.org/10.1037/0033-2909.120.2.272 Google Scholar
  161. Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLOS ONE, 8, e68210.  https://doi.org/10.1371/journal.pone.0068210 Google Scholar
  162. Wimmer, G. E., & Shohamy, D. (2012). Preference by Association: How memory mechanisms in the hippocampus bias decisions. Science, 338, 270–273.  https://doi.org/10.1126/science.1223252 Google Scholar
  163. Wittkuhn, L., Eppinger, B., Bartsch, L. M., Thurm, F., Korb, F. M., & Li, S.-C. (2018). Repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex modulates value-based learning during sequential decision-making. NeuroImage, 167, 384–395.  https://doi.org/10.1016/j.neuroimage.2017.11.057 Google Scholar
  164. Worthy, D. A., Gorlick, M. A., Pacheco, J. L., Schnyer, D. M., & Maddox, W. T. (2011). With age comes wisdom: Decision-making in younger and older adults. Psychological Science, 22, 1375–1380.  https://doi.org/10.1177/0956797611420301 Google Scholar
  165. Worthy, D. A., & Maddox, W. T. (2012). Age-based differences in strategy use in choice tasks. Frontiers in Neuroscience, 5.  https://doi.org/10.3389/fnins.2011.00145
  166. Wu, C. C., Samanez-Larkin, G. R., Katovich, K., & Knutson, B. (2014). Affective traits link to reliable neural markers of incentive anticipation. NeuroImage, 84, 279–289.  https://doi.org/10.1016/j.neuroimage.2013.08.055 Google Scholar
  167. Wu, J., Xiao, H., Sun, H., Zou, L., & Zhu, L.-Q. (2012). Role of dopamine receptors in ADHD: A systematic meta-analysis. Molecular Neurobiology, 45, 605–620.  https://doi.org/10.1007/s12035-012-8278-5 Google Scholar
  168. Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. Neuron, 75, 418–424.  https://doi.org/10.1016/j.neuron.2012.03.042 Google Scholar
  169. Zald, D. H., Woodward, N. D., Cowan, R. L., Riccardi, P., Sib Ansari, M., Baldwin, R. M., … Kessler, M. (2010). The interrelationship of dopamine D2-like receptor availability in striatal and extrastriatal brain regions in healthy humans: A principal component analysis of [18F]fallypride binding. NeuroImage, 51, 53–62.  https://doi.org/10.1016/j.neuroimage.2010.02.006 Google Scholar
  170. Zecca, L., Fariello, R., Riederer, P., Sulzer, D., Gatti, A., & Tampellini, D. (2002). The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Letters, 510, 216–220.  https://doi.org/10.1016/S0014-5793(01)03269-0 Google Scholar
  171. Zecca, L., Gallorini, M., Schünemann, V., Trautwein, A. X., Gerlach, M., Riederer, P., … Tampellini, D. (2001). Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: Consequences for iron storage and neurodegenerative processes. Journal of Neurochemistry, 76, 1766–1773.Google Scholar
  172. Zhu, L., Walsh, D., & Hsu, M. (2012). Neuroeconomic measures of social decision-making across the lifespan. Frontiers in Neuroscience, 6, 128.  https://doi.org/10.3389/fnins.2012.00128 Google Scholar
  173. Zucca, F. A., Bellei, C., Giannelli, S., Terreni, M. R., Gallorini, M., Rizzio, E., … Zecca, L. (2006). Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: Consequences for neuronal vulnerability. Journal of Neural Transmission, 113, 757–767.  https://doi.org/10.1007/s00702-006-0453-2 Google Scholar
  174. Zucca, F. A., Segura-Aguilar, J., Ferrari, E., Muñoz, P., Paris, I., Sulzer, D., … Zecca, L. (2017). Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Progress in Neurobiology, 155, 96–119.  https://doi.org/10.1016/j.pneurobio.2015.09.012 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Haas School of BusinessUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations