Distinctive semantic features in the healthy adult brain

  • Megan ReillyEmail author
  • Natalya Machado
  • Sheila E. Blumstein


The role of semantic features, which are distinctive (e.g., a zebra’s stripes) or shared (e.g. has four legs) for accessing a concept, has been studied in detail in early neurodegenerative disease such as semantic dementia (SD). However, potential neural underpinnings of such processing have not been studied in healthy adults. The current study examines neural activation patterns using fMRI while participants completed a feature verification task, in which they identified shared or distinctive semantic features for a set of natural kinds and man-made artifacts. The results showed that the anterior temporal lobe bilaterally is an important area for processing distinctive features, and that this effect is stronger within natural kinds than man-made artifacts. These findings provide converging evidence from healthy adults that is consistent with SD research, and support a model of semantic memory in which patterns of specificity of semantic information can partially explain differences in neural activation between categories.


Semantic memory Categorization fMRI Semantic features 



This work was supported in part by NIH Grant R01 DC006220 from the National Institute on Deafness and Other Communication Disorders. The contents of this paper reflect the views of the authors and not those of the NIH or NIDCD. M.R. was also supported by a dissertation Fellowship from the American Association of University Women, as well as the Kenneth G. and Pamela K. Galner Fund at Brown University. The authors would like to thank Drs. Neal Fox and Sara Guediche for their comments and support.


  1. Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907–918. CrossRefPubMedGoogle Scholar
  2. Bedny, M., Hulbert, J. C., & Thompson-Schill, S. L. (2007). Understanding words in context: The role of Broca’s area in word comprehension. Brain Research, 1146, 101–114. CrossRefPubMedGoogle Scholar
  3. Beeman, M., Friedman, R. B., Grafman, J., Perez, E., Diamond, S., & Lindsay, M. B. (1994). Summation priming and coarse semantic coding in the right hemisphere. Journal of Cognitive Neuroscience, 6(1), 26–45.CrossRefPubMedGoogle Scholar
  4. Bilenko, N., Grindrod, C., &Blumstein, S. E. (2009). Neural correlates of semantic competition during processing of ambiguous words. Journal of Cognitive Neuroscience, 21 (5), 960–975.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences 15(11), 527–536.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Binney, R. J., Embleton, K. V., Jefferies, E., Parker, G. J. M., & Lambon Ralph, M. A. (2010). The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cerebral Cortex, 20(11), 2728–2738.Google Scholar
  7. Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. NeuroImage, 71, 175–186. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonner, M. F., & Price, A. R. (2013). Where is the anterior temporal lobe and what does it do? Journal of Neuroscience 6, 4213–4215.CrossRefGoogle Scholar
  9. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefPubMedGoogle Scholar
  10. Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. CrossRefPubMedGoogle Scholar
  11. Canini, M., Della Rosa, P. A., Catricalà, E., Strijkers, K., Branzi, F. M., Costa, A., & Abutalebi, J. (2016). Semantic interference and its control: A functional neuroimaging and connectivity study. Human Brain Mapping, 37(11), 41794196.Google Scholar
  12. Catricalà, E., Della Rosa, P. A., Plebani, V., Perani, D., Gerrard, P., & Cappa, S. F. (2015). Semantic feature degradation and naming performance: Evidence from neurodegenerative disorders. Brain and Language, 147, 58–65.CrossRefPubMedGoogle Scholar
  13. Clarke, A., & Tyler, L. K. (2014). Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience 34(14), 4766–4775.CrossRefPubMedGoogle Scholar
  14. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefPubMedGoogle Scholar
  15. Davey, J., Thompson, H. E., Hallam, G., Karapanagiotidis, T., Murphy, C., De Caso, I., . . . Jefferies, E. (2016). Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. NeuroImage 137, 165–177.Google Scholar
  16. Devlin, J. T., Gonnerman, L. M., Andersen, E. S., & Seidenberg, M. S. (1998). Category-specific semantic deficits in focal and widespread brain damage: A computational account. Journal of Cognitive Neuroscience 10(1), 7794.Google Scholar
  17. Devlin, J. T., Moore, C. J., Mummery, C. J., Gorno-Tempini, M. L., Phillips, J. A., Noppeney, U., . . . Price, C. J. (2002). Anatomic constraints on cognitive theories of category specificity. NeuroImage, 15(3), 675–685.
  18. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1/2), 145–177. CrossRefPubMedGoogle Scholar
  19. Garrard, P., Lambon Ralph, M. A., Patterson, K., Pratt, K. H., & Hodges, J. R. (2005). Semantic feature knowledge and picture naming in dementia of Alzheimer’s type: A new approach. Brain and Language, 93(1), 79–94. CrossRefPubMedGoogle Scholar
  20. Gorno-Tempini, M. L., & Price, A. R. (2001). Identification of famous faces and buildings. Brain, 124, 2087–2097.CrossRefPubMedGoogle Scholar
  21. Grabowski, T. J., Damasio, A., Tranel, D., Ponto, L. L. B., Hichwa, R. D., & Damasio, A. (2001). A role for left temporal pole in the retrieval of words for unique entities. Human Brain Mapping, 13, 199–212.CrossRefPubMedGoogle Scholar
  22. Grossman, M., Smith, E. E., Koenig, P., Glosser, G., DeVita, C., Moore, P., & McMillan, C. (2002). The neural basis for categorization in semantic memory. NeuroImage 17, 1549–1561.CrossRefPubMedGoogle Scholar
  23. Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain, 115(6), 1783–1806.CrossRefPubMedGoogle Scholar
  24. Hsu, N. S., Schlichting, M. L., & Thompson-Schill, S. L. (2014). Feature diagnosticity affects representations of novel and familiar objects. Journal of Cognitive Neuroscience, 26(12), 2735–2749. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex 49, 611–625.CrossRefPubMedGoogle Scholar
  26. Jefferies, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132–2147.CrossRefPubMedGoogle Scholar
  27. Jefferies, E., Patterson, K., & Lambon Ralph, M. A. (2008). Deficits of knowledge versus executive control in semantic cognition insights from cued naming. Neuropsychologia, 46(2), 649–658.CrossRefPubMedGoogle Scholar
  28. Jouen, A. L., Ellmore, T. M., Madden, C. J., Pallier, C., Dominey, P. F., & Ventre-Dominey, J. (2015). Beyond the word and image: Characteristics of a common meaning system for language and vision revealed by functional and structural imaging. NeuroImage, 106, 72–85. CrossRefPubMedGoogle Scholar
  29. Kan, I. P., & Thompson-Schill, S. L. (2004). Effect of name agreement on prefrontal activity during overt and covert picture naming. Cognitive, Affective, & Behavioral Neuroscience, 4(1), 43–57.CrossRefGoogle Scholar
  30. Kleiner, M., Brainard, D. H., Pelli, D. G., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3? Perception, 36(14), 1–16.Google Scholar
  31. Koustaal, W., Wagner, A. D., Rotte, M., Maril, A., Buckner, R. L., & Schacter, D. L. (2001). Perceptual specificity in visual object priming: Functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia, 39(2), 184–199.CrossRefGoogle Scholar
  32. Laisney, M., Giffard, B., Belliard, S., de la Sayette, V., Desgranges, B., & Eustache, F. (2011). When the zebra loses its stripes: Semantic priming in early Alzheimer’s disease and semantic dementia. Cortex, 47(1), 35–46. CrossRefPubMedGoogle Scholar
  33. Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience 18, 42–55.CrossRefGoogle Scholar
  34. Lambon Ralph, M. A., Lowe, C., & Rogers, T. T. (2007). Neural basis of category-specific semantic deficits for living things: Evidence from semantic dementia, HSVE and a neural network model. Brain, 130(4), 1127–1137.CrossRefPubMedGoogle Scholar
  35. Lambon Ralph, M. A., Pobric, G., & Jefferies, E. (2009). Conceptual knowledge is underpinned by the temporal pole bilaterally: Convergent evidence from rTMS. Cerebral Cortex, 19(4), 832–838. CrossRefPubMedGoogle Scholar
  36. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.CrossRefGoogle Scholar
  37. Lawrence, M. A. (2013). ez: Easy analysis and visualization of factorial experiments [Computer software]. Retrieved from
  38. Libon, D. J., Rascovsky, K., Powers, J., Irwin, D. J., Boller, A., Weinberg, D., . . . Grossman, M. (2013). Comparative semantic profiles in semantic dementia and Alzheimer’s disease. Brain, 136(Pt. 8), 2497–2509.
  39. Marques, J. F. (2007). The general/specific breakdown of semantic memory and the nature of superordinate knowledge: Insights from superordinate and basic-level feature norms. Cognitive Neuropsychology, 24(8), 879–903. CrossRefPubMedGoogle Scholar
  40. Marques, J. F., Mares, I., Martins, M. E., & Martins, I. P. (2013). The hierarchical organization of semantic knowledge in stroke aphasia: The role of feature sharedness and executive function. Journal of Neurolinguistics, 26(5), 552–560. CrossRefGoogle Scholar
  41. McRae, K., & Cree, G. (2002). Factors underlying category-specific deficits. In E. M. E. Forde & G. Humphreys (Eds.), Category specificity in mind and brain. East Sussex, UK: Psychology Press.Google Scholar
  42. McRae, K., Cree, G. S., & Westmacott, R. (1999). Further evidence for feature correlations in semantic memory. Canadian Journal of Experimental Psychology 53(5), 360–373.CrossRefPubMedGoogle Scholar
  43. McRae, K., De Sa, V., & Seidenberg, M. (1997). On the nature and scope of feature representation of word meaning. Journal of Experimental Psychology: General, 126, 99–130.CrossRefGoogle Scholar
  44. McRae, K., Hare, M., Elman, J. L., & Ferretti, T. (2005). A basis for generating expectancies for verbs from nouns. Memory & Cognition, 33, 1174.CrossRefGoogle Scholar
  45. Mechelli, A., Sartori, G., Orlandi, P., & Price, C. J. (2006). Semantic relevance explains category deficits in medial fusiform gyri. NeuroImage, 30, 992–1002.CrossRefPubMedGoogle Scholar
  46. Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2006). Binding crossmodal object features in perirhinal cortex. Proceedings of the National Academy of Sciences, 103(21), 8239–8244.CrossRefGoogle Scholar
  47. Moss, H. E., Tyler, L. K., Durrant-Peatfield, M., & Bunn, E. M. (1998). ‘Two eyes of a see-through’: Impaired and intact semantic knowledge in a case of selective deficit for living things. Neurocase, 4(4/5), 291–310. Google Scholar
  48. Moss, H. E., & Tyler, L. K. (2000). A progressive category-specific semantic deficit for non-living things. Neuropsychologia, 38(1), 60–82.CrossRefPubMedGoogle Scholar
  49. Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S. J., & Hodges, J. R. (2001). A voxel-based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory. Annals of Neurology, 47(1), 36–45.CrossRefGoogle Scholar
  50. Nagel, I. E., Schumacher, E. H., Goebel, R., & D’Esposito, M. (2008). Functional MRI investigation of verbal selection mechanisms in lateral prefrontal cortex. NeuroImage, 43(4), 801–807.
  51. Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25(11), 1824–1850.CrossRefPubMedGoogle Scholar
  52. Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8(2), 123–133.
  53. Patterson, K., Kopelman, M. D., Woollams, A. M., Brownsett, S. L. E., Geranmayeh, F., & Wise, R. J. S. (2014). Semantic memory: Which side are you on? Neuropsychologia.
  54. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987.CrossRefPubMedGoogle Scholar
  55. Peelle, J. E., Troiani, V., & Grossman, M. (2009). Interaction between process and content in semantic memory: An fMRI study of noun feature knowledge. Neuropsychologia, 47(4), 995–1003.CrossRefPubMedGoogle Scholar
  56. Peelen, M. V. M., & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex. Journal of Neuroscience, 32, 15728–15736.CrossRefPubMedGoogle Scholar
  57. Pobric, G., Lambon Ralph, M. A., & Jefferies, E. (2009). The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence. Cortex, 45(9), 1104–1110. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816-847Google Scholar
  59. Price, C. J., Hope, T. M., & Seghier, M. L. (2017). Ten problems and solutions when predicting individual outcome from lesion site after stroke. NeuroImage, 145(Pt. B), 200–208. CrossRefPubMedGoogle Scholar
  60. R-Core-Team (2014). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from htp://www/
  61. Randall, B., Moss, H. E., Rodd, J. M., Greer, M., & Tyler, L. K. (2004). Distinctiveness and correlation in conceptual structure: Behavioral and computational studies. Journal of Experimental Psychology: Learning, Memory and Cognition 30(2), 393–406.Google Scholar
  62. Raposo, A., Mendes, M., & Marques, J. F. (2012). The hierarchical organization of semantic memory: Executive function in the processing of superordinate concepts. NeuroImage, 59(2), 1870–1878. CrossRefPubMedGoogle Scholar
  63. Reilly, M., Machado, N., & Blumstein, S. E. (2015). Hemispheric lateralization of semantic feature distinctiveness. Neuropsychologia, 75, 99–108. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rice, G. E., Hoffman, P., & Lambon Ralph, M. A. (2015a). Graded specialization within and between the anterior temporal lobes. Annals of the New York Academy of Sciences 1359(1), 84–97.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rice, G. E., Lambon Ralph, M. A., & Hoffman, P. (2015b). The roles of left versus right anterior temporal lobes in conceptual knowledge: An ALE meta-analysis of 97 functional neuroimaging studies. Cerebral Cortex, 25(11), 4374–4391. CrossRefPubMedGoogle Scholar
  66. Righi, G., Blumstein, S. E., Mertus, J., & Worden, M. S. (2010). Neural systems underlying lexical competition: An eye tracking and fMRI study. Journal of Cognitive Neuroscience 22(2), 213224.Google Scholar
  67. Robinson, G., Blair, J., & Cipolotti, L. (1998). Dynamic aphasia: An inability to select between competing verbal responses? Brain, 121, 77–89.CrossRefPubMedGoogle Scholar
  68. Rogers, T. T., Hocking, J., Mechelli, A., Patterson, K., & Price, C. (2005). Fusiform activation to animals is driven by the process, not the stimulus. Journal of Cognitive Neuroscience 17(3), 434–445.Google Scholar
  69. Rogers, T. T., Ivanoui, A., Patterson, K., & Hodges, J. R. (2006). Semantic memory in Alzheimer’s disease and the fronto-temporal dementias: A longitudinal study of 236 patients. Neuropsychology, 20(3), 319–335.CrossRefPubMedGoogle Scholar
  70. Rogers, T. T., Patterson, K., Jefferies, E., & Ralph, M. A. (2015). Disorders of representation and control in semantic cognition: Effects of familiarity, typicality, and specificity. Neuropsychologia, 76, 220–239. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rogers, T. T., Ralph, M. A., Hodges, J. R., & Patterson, K. (2004). Natural selection: The impact of semantic impairment on lexical and object decision. Cognitive Neuropsychology, 21(2), 331–352. CrossRefPubMedGoogle Scholar
  72. Ross, L. A., & Olson, I. R. (2010). Social cognition and the anterior temporal lobes. NeuroImage, 49(4), 3452–3462. CrossRefPubMedGoogle Scholar
  73. Sabsevitz, D. S., Mdeler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage 27, 188–200.CrossRefPubMedGoogle Scholar
  74. Santi, A., Raposo, A., Frade, S., & Marques, J.F. (2016). Concept typicality responses in the semantic memory network. Neuropsychologia 93, 167–175.CrossRefPubMedGoogle Scholar
  75. Schnur, T. T., Lee, E., Coslett, H. B., Schwartz, M. F., & Thompson-Schill, S. L. (2005). When lexical selection gets tough, the LIFG gets going: A lesion analysis study of interference during word production. Brain and Language, 95(1), 12–13. CrossRefGoogle Scholar
  76. Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. Neuroscientist, 19(1), 43–61. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Simmons, W. K., & Martin, A. (2009). The anterior temporal lobes and the functional architecture of semantic memory. Journal of the International Neuropsychological Society, 15(5), 645–649. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. NeuroImage, 19(3), 613–626. CrossRefPubMedGoogle Scholar
  79. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York, NY: Thieme Medical.Google Scholar
  80. Taylor, K. I., Moss, H. E., & Tyler, L. K. (2007). The conceptual structure account: A cognitive model of semantic memory and its neural instantiation. In J. Hart & M. Kraut (Eds.), The neural basis of semantic memory (pp. 265–201). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  81. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of the Sciences of the United States of America, 94, 14792–14797.Google Scholar
  82. Tranel, D. (2009). The left temporal pole is important for retrieving words for unique concrete entities. Aphasiology, 23(7/8), 867–884. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in System Neuroscience, 5, 1. CrossRefGoogle Scholar
  84. Tyler, L.K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences 5(6), 244-52.CrossRefPubMedGoogle Scholar
  85. Tyler, L. K., Stamatakis, E. A., Bright, J. I. M., Abdallah, S., Rodd, J. M., & Moss, H. (2004). Processing objects at different levels of specificity. Journal of Cognitive Neuroscience, 16(3), 351–362.CrossRefPubMedGoogle Scholar
  86. Ursino, M., Cuppini, C., Cappa, S. F., & Catricalá, E. (2018). A feature-based neurocomputational model of semantic memory. Cognitive Neurodynamics, 1–23.
  87. Visser, M. Lambon Ralph, M. A. (2011). Differential contributions of bilateral anterior temporal lobe and left anterior superior temporal gyrus to semantic processes. Journal of Cognitive Neuroscience, 23(10), 3121–3131.CrossRefPubMedGoogle Scholar
  88. Von der Heide, R. J., Skipper, L. M., & Olson, I. R. (2013). Anterior temporal face patches: A meta-analysis and empirical study. Frontiers in Human Neuroscience, 7(17).
  89. Wilshire, C. E., & McCarthy, R. A. (2002). Evidence for a context-sensitive word retrieval disorder in a case of nonfluent aphasia. Cognitive Neuropsychology, 19(2), 165–186. CrossRefGoogle Scholar
  90. Woollams, A. M. (2012). Apples are not the only fruit: the effects of concept typicality on semantic representation in the anterior temporal lobe. Frontiers in Human Neuroscience, 6, 85. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wright, P., Randall, B., Clarke, A., & Tyler, L. K. (2015). The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes. Neuropsychologia 76, 192–207.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of South CarolinaColumbiaUSA
  2. 2.Massachusetts General HospitalBostonUSA
  3. 3.Department of Cognitive, Linguistic and Psychological SciencesBrown UniversityProvidenceUSA
  4. 4.Brown Institute for Brain ScienceBrown UniversityProvidenceUSA

Personalised recommendations