Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 19, Issue 1, pp 211–223 | Cite as

Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies

  • Frank Van OverwalleEmail author
  • Frederik Van de Steen
  • Peter Mariën
Article
  • 99 Downloads

Abstract

In this analysis we explored the effective connectivity of the cerebellum with the cerebrum in social mentalizing, across five studies (n = 91) involving abstract and complex forms of mentalizing, such as (a) person and group impression formation, based on behavioral descriptions, and (b) constructing personal counterfactual events. Connectivity was analyzed by applying dynamic causal model analysis, which revealed effective connectivity between the mentalizing areas of the cerebellum and cerebrum. The results revealed a significant pattern of bidirectional (closed-loop) connectivity linking the right posterior cerebellum with bilateral temporo-parietal junction (TPJ), associated with behavior understanding. These connections are consistent with known anatomical data on closed loops between the cerebellum and cerebrum, although contralateral closed loops typically dominate. This analysis improves on an earlier psychophysiological interaction analysis of this dataset, which had failed to reveal such evidence of closed loops. Within the cerebrum, there were connections between the bilateral areas of TPJ, as well as connections between bilateral TPJ and the (ventral and dorsal) medial prefrontal cortex. The discussion centers on the function of cerebro-cerebellar connections in generating internal cerebellar “forward” models, potentially serving the automatic understanding, prediction, and error correction of behavioral sequences.

Keywords

Dynamic causal modeling Effective connectivity Social mentalizing Cerebellum 

References

  1. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional–anatomic fractionation of the brain’s default network. Neuron, 65, 550–562.  https://doi.org/10.1016/j.neuron.2010.02.005 CrossRefGoogle Scholar
  2. Baetens, K., Ma, N., Steen, J., & Van Overwalle, F. (2014). Involvement of the mentalizing network in social and non-social high construal. Social Cognitive and Affective Neuroscience, 9, 817–824.  https://doi.org/10.1093/scan/nst048 CrossRefGoogle Scholar
  3. Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80, 807–815.  https://doi.org/10.1016/j.neuron.2013.10.044 CrossRefGoogle Scholar
  4. Buckner, R., Krienen, F., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 2322–2345.  https://doi.org/10.1152/jn.00339.2011 CrossRefGoogle Scholar
  5. Cui, S. Z., Li, E. Z., Zang, Y. F., Weng, X. C., Ivry, R., & Wang, J. J. (2000). Both sides of human cerebellum involved in preparation and execution of sequential movements. NeuroReport, 11, 3849–3853.  https://doi.org/10.1097/00001756-200011270-00049 CrossRefGoogle Scholar
  6. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229.  https://doi.org/10.1006/nimg.1997.0291 CrossRefGoogle Scholar
  7. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19, 1273–1302.  https://doi.org/10.1016/S1053-8119(03)00202-7 CrossRefGoogle Scholar
  8. Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., Van Wijk, B. C. M., . . . Zeidman, P. (2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage, 128, 413–431.  https://doi.org/10.1016/j.neuroimage.2015.11.015
  9. Friston, K., Zeidman, P., & Litvak, V. (2015). Empirical Bayes for DCM: A group inversion scheme. Frontiers in Systems Neuroscience, 9, 164.  https://doi.org/10.3389/fnsys.2015.00164 CrossRefGoogle Scholar
  10. Guell, X., Gabrieli, J. D. E., & Schmahmann, J. D. (2018). Embodied cognition and the cerebellum: Perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex, 100, 140–148.  https://doi.org/10.1016/j.cortex.2017.07.005 CrossRefGoogle Scholar
  11. Hillebrandt, H., Friston, K. J., & Blakemore, S.-J. (2015). Effective connectivity during animacy perception—Dynamic causal modelling of Human Connectome Project data. Scientific Reports, 4, 6240.  https://doi.org/10.1038/srep06240 CrossRefGoogle Scholar
  12. Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304–313.  https://doi.org/10.1038/nrn2332 CrossRefGoogle Scholar
  13. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience, 23, 8432–8444.  https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003 CrossRefGoogle Scholar
  14. Keren-Happuch, E., Chen, S.-H. A., Ho, M.-H. R., & Desmond, J. E. (2014). A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Human Brain Mapping, 35, 593–615.  https://doi.org/10.1002/hbm.22194 CrossRefGoogle Scholar
  15. Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19, 2485–2497.  https://doi.org/10.1093/cercor/bhp135 CrossRefGoogle Scholar
  16. Ma, N., Vandekerckhove, M., Baetens, K., Van Overwalle, F., Seurinck, R., & Fias, W. (2012a). Inconsistencies in spontaneous and intentional trait inferences. Social Cognitive and Affective Neuroscience, 7, 937–950.  https://doi.org/10.1093/scan/nsr064 CrossRefGoogle Scholar
  17. Ma, N., Vandekerckhove, M., Van Hoeck, N., & Van Overwalle, F. (2012b). Distinct recruitment of temporo-parietal junction and medial prefrontal cortex in behavior understanding and trait identification. Social Neuroscience, 7, 591–605.  https://doi.org/10.1080/17470919.2012.686925 CrossRefGoogle Scholar
  18. Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 65, 276–291.  https://doi.org/10.1016/j.neubiorev.2016.03.020 CrossRefGoogle Scholar
  19. O’Reilly, J. X., Woolrich, M. W., Behrens, T. E. J., Smith, S. M., & Johansen-Berg, H. (2012). Tools of the trade: Psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience, 7, 604–609.  https://doi.org/10.1093/scan/nss055 CrossRefGoogle Scholar
  20. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.  https://doi.org/10.1016/0028-3932(71)90067-4 CrossRefGoogle Scholar
  21. Pisotta, I., & Molinari, M. (2014). Cerebellar contribution to feedforward control of locomotion. Frontiers in Human Neuroscience, 8, 475:1–5.  https://doi.org/10.3389/fnhum.2014.00475 Google Scholar
  22. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682.  https://doi.org/10.1073/pnas.98.2.676 CrossRefGoogle Scholar
  23. Salmi, J., Pallesen, K. J., Neuvonen, T., Brattico, E., Korvenoja, A., Salonen, O., & Carlson, S. (2010). Cognitive and motor loops of the human cerebro-cerebellar system. Journal of Cognitive Neuroscience, 22, 2663–2676.  https://doi.org/10.1162/jocn.2009.21382 CrossRefGoogle Scholar
  24. Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9–34.  https://doi.org/10.1016/j.neubiorev.2014.01.009 CrossRefGoogle Scholar
  25. Sokolov, A. A., Erb, M., Grodd, W., & Pavlova, M. A. (2014). Structural loop between the cerebellum and the superior temporal sulcus: Evidence from diffusion tensor imaging. Cerebral Cortex, 24, 626–632.  https://doi.org/10.1093/cercor/bhs346 CrossRefGoogle Scholar
  26. Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E. M., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49, 3099–3109.  https://doi.org/10.1016/j.neuroimage.2009.11.015 CrossRefGoogle Scholar
  27. Stoodley, C. J., MacMore, J. P., Makris, N., Sherman, J. C., & Schmahmann, J. D. (2016). Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage: Clinical, 12, 765–775.  https://doi.org/10.1016/j.nicl.2016.10.013 CrossRefGoogle Scholar
  28. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage, 44, 489–501.  https://doi.org/10.1016/j.neuroimage.2008.08.039 CrossRefGoogle Scholar
  29. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46, 831–844.  https://doi.org/10.1016/j.cortex.2009.11.008 CrossRefGoogle Scholar
  30. Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. NeuroImage, 59, 1560–1570.  https://doi.org/10.1016/j.neuroimage.2011.08.065 CrossRefGoogle Scholar
  31. Suzuki, L., Coulon, P., Sabel-Goedknegt, E. H., & Ruigrok, T. J. H. (2012). Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. Journal of Neuroscience, 32, 10854–10869.  https://doi.org/10.1523/JNEUROSCI.0857-12.2012 CrossRefGoogle Scholar
  32. Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological Review, 117, 440–463.  https://doi.org/10.1037/a0018963 CrossRefGoogle Scholar
  33. Ushakov, V., Sharaev, M. G., Kartashov, S. I., Zavyalova, V. V., Verkhlyutov, V. M., & Velichkovsky, B. M. (2016). Dynamic causal modeling of hippocampal links within the human default mode network: Lateralization and computational stability of effective connections. Frontiers in Human Neuroscience, 10, 528:1–14.  https://doi.org/10.3389/fnhum.2016.00528 Google Scholar
  34. Van der Cruyssen, L., Heleven, E., Ma, N., Vandekerckhove, M., & Van Overwalle, F. (2015). Distinct neural correlates of social categories and personality traits. NeuroImage, 104, 336–346.  https://doi.org/10.1016/j.neuroimage.2014.09.022 CrossRefGoogle Scholar
  35. Van der Cruyssen, L., Van Duynslaeger, M., Cortoos, A., & Van Overwalle, F. (2009). ERP time course and brain areas of spontaneous and intentional goal inferences. Social Neuroscience, 4, 165–184.  https://doi.org/10.1080/17470910802253836 CrossRefGoogle Scholar
  36. Van Duynslaeger, M., Sterken, C., Van Overwalle, F., & Verstraeten, E. (2008). EEG components of spontaneous trait inferences. Social Neuroscience, 3, 164–177.  https://doi.org/10.1080/17470910801907226 CrossRefGoogle Scholar
  37. Van Duynslaeger, M., Van Overwalle, F., & Verstraeten, E. (2007). Electrophysiological time course and brain areas of spontaneous and intentional trait inferences. Social Cognitive and Affective Neuroscience, 2, 174–188.  https://doi.org/10.1093/scan/nsm016 CrossRefGoogle Scholar
  38. Van Hoeck, N., Ma, N., Ampe, L., Baetens, K., Vandekerckhove, M., & Van Overwalle, F. (2013). Counterfactual thinking: An fMRI study on changing the past for a better future. Social Cognitive and Affective Neuroscience, 8, 556–564.  https://doi.org/10.1093/scan/nss031 CrossRefGoogle Scholar
  39. Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30, 829–858.  https://doi.org/10.1002/hbm.20547 CrossRefGoogle Scholar
  40. Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48, 564–584.  https://doi.org/10.1016/j.neuroimage.2009.06.009 CrossRefGoogle Scholar
  41. Van Overwalle, F., Baetens, K., Mariën, P., & Vandekerckhove, M. (2014). Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. NeuroImage, 86, 554–572.  https://doi.org/10.1016/j.neuroimage.2013.09.033 CrossRefGoogle Scholar
  42. Van Overwalle, F., Baetens, K., Mariën, P., & Vandekerckhove, M. (2015). Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Social Neuroscience, 10, 337–344.  https://doi.org/10.1080/17470919.2015.1005666 Google Scholar
  43. Van Overwalle, F., D’aes, T., & Mariën, P. (2015). Social cognition and the cerebellum: A meta-analytic connectivity analysis. Human Brain Mapping, 36, 5137–5154.  https://doi.org/10.1002/hbm.23002
  44. Van Overwalle, F., & Mariën, P. (2016). Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis. NeuroImage, 124, 248–255.  https://doi.org/10.1016/j.neuroimage.2015.09.001 CrossRefGoogle Scholar
  45. Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., . . . Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.  https://doi.org/10.1152/jn.00338.2011
  46. Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H., . . . Jiang, T. (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research, 97, 194–205.  https://doi.org/10.1016/j.schres.2007.05.029
  47. Zhou, Y., Zeidman, P., Wu, S., Razi, A., Chen, C., Yang, L., . . . Friston, K. J. (2018). Altered intrinsic and extrinsic connectivity in schizophrenia. NeuroImage: Clinical, 17, 704–716.  https://doi.org/10.1016/j.nicl.2017.12.006

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Frank Van Overwalle
    • 1
    Email author
  • Frederik Van de Steen
    • 2
  • Peter Mariën
    • 3
    • 4
  1. 1.Faculty of Psychology and Educational SciencesVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Data AnalysisUniversity of GhentGhentBelgium
  3. 3.Faculty of Arts, Department of Clinical and Experimental NeurolinguisticsCLIN, Vrije Universiteit BrusselBrusselsBelgium
  4. 4.Department of Neurology and Memory ClinicZNA Middelheim HospitalAntwerpBelgium

Personalised recommendations