Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 19, Issue 1, pp 197–210 | Cite as

Facial expressiveness and physiological arousal in frontotemporal dementia: Phenotypic clinical profiles and neural correlates

  • Fiona KumforEmail author
  • Jessica L. Hazelton
  • Jacqueline A. Rushby
  • John R. Hodges
  • Olivier Piguet
Article

Abstract

Early theories of emotion processing propose an interplay between autonomic function and cognitive appraisal of emotions. Patients with frontotemporal dementia show profound social cognition deficits and atrophy in regions implicated in autonomic emotional responses (insula, amygdala, prefrontal cortex), yet objective measures of facial expressiveness and physiological arousal have been relatively unexplored. We investigated psychophysiological responses (surface facial electromyography (EMG); skin conductance level (SCL)) to emotional stimuli in 25 behavioural-variant frontotemporal dementia (bvFTD) patients, 14 semantic dementia (SD) patients, and 24 healthy older controls, while viewing emotionally positive, neutral, or negative video clips. Voxel-based morphometry was conducted to identify neural correlates of responses. Unlike controls, patients with bvFTD did not show differential facial EMG responses according to emotion condition, whereas SD patients showed increased zygomaticus responses to both positive and neutral videos. Controls showed greater arousal (SCL) when viewing positive and negative videos; however, both bvFTD and SD groups showed no change in SCL across conditions. Regardless of group membership, right insula damage was associated with dampened zygomaticus responses to positive film stimuli. Change in arousal (SCL) was associated with lower integrity of the caudate, amygdala, and temporal pole. Our results demonstrate that while bvFTD patients show an overall dampening of responses, SD patients appear to show incongruous facial emotional expressions. Abnormal responding is related to cortical and subcortical brain atrophy. These results identify potential mechanisms for the abnormal social behaviour in bvFTD and SD and demonstrate that psychophysiological responses are an important mechanism underpinning normal socioemotional functioning.

Keywords

Electromyography Skin conductance Semantic dementia Imaging 

Notes

Acknowledgements

The authors are grateful to their patients and families for supporting this research. This work was supported in part by funding to ForeFront, a collaborative research group dedicated to the study of frontotemporal dementia and motor neuron disease, from the National Health and Medical Research Council (NHMRC) (APP1037746) and the Australian Research Council (ARC) Centre of Excellence in Cognition and its Disorders Memory Program (CE11000102). FK is supported by a NHMRC-ARC Dementia Research Development Fellowship (APP1097026). OP is supported by an NHMRC Senior Research Fellowship (APP1103258). The authors acknowledge the Sydney Informatics Hub at the University of Sydney for providing access to High Performance Computing resources.

Compliance with ethical standards

Conflicts of interest

None to declare.

Supplementary material

13415_2018_658_MOESM1_ESM.docx (233 kb)
ESM 1 (DOCX 232 kb)

References

  1. Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379–390.Google Scholar
  2. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry - the methods. Neuroimage, 11, 805–821.Google Scholar
  3. Babinski, J. (1914). Contributions of cerebral hemispheric organisation in the study of mental troubles. Revue Neurologique, 27, 845–848.Google Scholar
  4. Balconi, M., Cotelli, M., Brambilla, M., Manenti, R., Cosseddu, M., Premi, E., . . . Borroni, B. (2015). Understanding emotions in frontotemporal dementia: the explicit and implicit emotional cue mismatch. Journal of Alzheimer's Disease, 46(1), 211–225.Google Scholar
  5. Beissner, F., Meissner, K., Bär, K.-J., & Napadow, V. (2013). The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. Journal of Neuroscience, 33(25), 10503–10511.Google Scholar
  6. Bora, E., Velakoulis, D., & Walterfang, M. (2016). Meta-analysis of facial emotion recognition in behavioral variant frontotemporal dementia: Comparison with Alzheimer disease and healthy controls. Journal of Geriatric Psychiatry and Neurology, 29(4), 205–211.Google Scholar
  7. Borroni, B., Benussi, A., Premi, E., Alberici, A., Marcello, E., Gardoni, F., . . . Padovani, A. (2017). Biological, neuroimaging, and neurophysiological markers in frontotemporal dementia: Three faces of the same coin. Journal of Alzheimer's Disease(Preprint), 1–11.Google Scholar
  8. Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. Cognitive neuroscience of emotion, 25, 49–59.Google Scholar
  9. Chan, D., Anderson, V., Pijenburg, Y., Whitwell, J. L., Barnes, J., Scahill, R., . . . Fox, N. C. (2009). The clinical profile of right temporal lobe atrophy. Brain, 132, 1287–1298.Google Scholar
  10. Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13(4), 500–505.Google Scholar
  11. Craig, A. D. (2002). Opinion: How do you feel? Interoception: The sense of the physiological condition of the body. Nature reviews. Neuroscience, 3(8), 655.Google Scholar
  12. Craig, A. D. (2005). Forebrain emotional asymmetry: A neuroanatomical basis? Trends in Cognitive Sciences, 9(12), 566–571.Google Scholar
  13. Craig, A. D. (2009). How do you feel - now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70.Google Scholar
  14. Damasio, A. R., Everitt, B., Bishop, D., Damasio, A. R., Everitt, B., & Bishop, D. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 351(1346), 1413–1420.Google Scholar
  15. Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L. B., Parvizi, J., & Hichwa, R. D. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3(10), 1049–1056.Google Scholar
  16. de Sousa, A., McDonald, S., & Rushby, J. (2012). Changes in emotional empathy, affective responsivity, and behavior following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34(6), 606–623.Google Scholar
  17. de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2011). Understanding deficits in empathy after traumatic brain injury: The role of affective responsivity. Cortex, 47(5), 526–535.Google Scholar
  18. Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2010). Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex, 21(7), 1498–1506.Google Scholar
  19. Dimberg, U., & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions. Scandinavian Journal of Psychology, 39(1), 39–45.Google Scholar
  20. Edwards-Lee, T., Miller, B. L., Benson, D. F., Cummings, J. L., Russell, G. L., Boone, K., & Mena, I. (1997). The temporal variant of frontotemporal dementia. Brain, 120(6), 1027–1040.Google Scholar
  21. Fridlund, A. J., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23(5), 567–589.Google Scholar
  22. Gorno-Tempini, M. L., Hillis, A., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., . . . Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006–1014.Google Scholar
  23. Guo, C. C., Sturm, V. E., Zhou, J., Gennatas, E. D., Trujillo, A. J., Hua, A. Y., . . . Rankin, K. (2016). Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proceedings of the National Academy of Sciences, 113(17), E2430–E2439.Google Scholar
  24. Halabi, C., Halabi, A., Dean, D. L., Wang, P.-N., Boxer, A. L., Trojanowski, J. Q., . . . Seeley, W. W. (2013). Patterns of striatal degeneration in frontotemporal dementia. Alzheimer Disease and Associated Disorders, 27(1), 74–83.Google Scholar
  25. Hein, G., Lamm, C., Brodbeck, C., & Singer, T. (2011). Skin conductance response to the pain of others predicts later costly helping. PloS One, 6(8), e22759.Google Scholar
  26. Hodges, J. R., Davies, R. R., Xuereb, J. H., Kril, J. J., & Halliday, G. (2003). Survival in frontotemporal dementia. Neurology, 61(3), 349–354.Google Scholar
  27. Hodges, J. R., Mitchell, J., Dawson, K., Spillantini, M. G., Xuereb, J. H., McMonagle, P., . . . Patterson, K. (2010). Semantic dementia: Demography, familial factors and survival in a consecutive series of 100 cases. Brain, 133(Pt 1), 300–306.Google Scholar
  28. Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain, 115(6), 1783–1806.Google Scholar
  29. Hoefer, M., Allison, S. C., Schauer, G. F., Neuhaus, J. M., Hall, J., Dang, J. N., . . . Rosen, H. J. (2008). Fear conditioning in frontotemporal lobar degeneration and Alzheimer's disease. Brain, 131(6), 1646–1657.Google Scholar
  30. Hsieh, S., Irish, M., Daveson, N., Hodges, J. R., & Piguet, O. (2013a). When one loses empathy: Its effect on carers of patients with dementia. Journal of Geriatric Psychiatry and Neurology, 26(3), 174–184.Google Scholar
  31. Hsieh, S., Schubert, S., Hoon, C., Mioshi, E., & Hodges, J. R. (2013b). Validation of the Addenbrooke's Cognitive Examination III in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord, 36(3-4), 242–250.Google Scholar
  32. Hutchings, R., Hodges, J. R., Piguet, O., & Kumfor, F. (2015). Why SHOULD I CARE? DIMENSIONS OF SOCIO-EMOTIONAL COGNITION IN YOUNGER-ONSET DEMENTIa. Journal of Alzheimer's Disease, 48(1), 135–147.Google Scholar
  33. Ibañez, A., & Manes, F. (2012). Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology, 78(17), 1354–1362.Google Scholar
  34. Irish, M., Kumfor, F., Hodges, J. R., & Piguet, O. (2013). A tale of two hemispheres: Contrasting patterns of socioemotional dysfunction in left- versus right-lateralised semantic dementia. Dementia and Neuropsychologia, 7(1), 88–95.Google Scholar
  35. James, W. (1884). What is an emotion? Mind, 9(34), 188–205.Google Scholar
  36. Josephs, K. A., Whitwell, J. L., Knopman, D. S., Boeve, B. F., Vemuri, P., Senjem, M. L., . . . Jack Jr, C. R. (2009). Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology, 73(18), 1443–1450.Google Scholar
  37. Joshi, A., Mendez, M. F., Kaiser, N., Jimenez, E., Mather, M., & Shapira, J. S. (2014). Skin conductance levels may reflect emotional blunting in behavioral variant frontotemporal dementia. Journal of Neuropsychiatry and Clinical Neurosciences, 26(3), 227–232.Google Scholar
  38. Kamminga, J., Kumfor, F., Burrell, J. R., Piguet, O., Hodges, J. R., & Irish, M. (2015). Differentiating between right-lateralised semantic dementia and behavioural-variant frontotemporal dementia: An examination of clinical characteristics and emotion processing. Journal of Neurology, Neurosurgery and Psychiatry, 86, 1082–1088.Google Scholar
  39. Kumfor, F., Hodges, J. R., & Piguet, O. (2014a). Ecologically valid assessment of emotional enhancement of memory in progressive nonfluent aphasia and Alzheimer's disease. Journal of Alzheimer's Disease, 42(1), 201–210.Google Scholar
  40. Kumfor, F., Ibanez, A., Hutchings, R., Hazelton, J. L., Hodges, J. R., & Piguet, O. (2018). Beyond the face: How context modulates emotion processing in frontotemporal dementia subtypes. Brain,Google Scholar
  41. Kumfor, F., Irish, M., Hodges, J. R., & Piguet, O. (2013). The orbitofrontal cortex is involved in emotional enhancement of memory: Evidence from the dementias. Brain, 136, 2992–3003.Google Scholar
  42. Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J. R., & Piguet, O. (2016). On the right side? A longitudinal study of left- versus right-lateralized semantic dementia. Brain, 139(Pt 3), 986–998.Google Scholar
  43. Kumfor, F., & Piguet, O. (2012). Disturbance of emotion processing in frontotemporal dementia: A synthesis of cognitive and neuroimaging findings. Neuropsychology Review, 22(3), 280–297.Google Scholar
  44. Kumfor, F., Sapey-Triomphe, L.-A., Leyton, C. E., Burrell, J. R., Hodges, J. R., & Piguet, O. (2014b). Degradation of emotion processing ability in corticobasal syndrome and Alzheimer's disease. Brain, 137(Pt 11), 3061–3072.Google Scholar
  45. Landin-Romero, R., Kumfor, F., Leyton, C. E., Irish, M., Hodges, J. R., & Piguet, O. (2017). Disease-specific patterns of cortical and subcortical degeneration in a longitudinal study of Alzheimer's disease and behavioural-variant frontotemporal dementia. Neuroimage, 151, 72–80.Google Scholar
  46. Lang, P. J. (1980). Behavioral treatment and bio-behavioral assessment. In J. B. Sidowski, J. H. Johnson, & T. A. Williams (Eds.), Technology in mental health care delivery system (pp. 119–137). Norwood, NJ: Ablex.Google Scholar
  47. Lange, C. (1922). The emotions (I. A. Haupt, Trans.). In K. Dunlap (Ed.), (pp. 33–90). Baltimore: Williams & Wilkins.Google Scholar
  48. Levenson, R. W. (1988). Emotion and the autonomic nervous system: A prospectus for research on autonomic specificity. Social psychophysiology: Theory and clinical applications.Google Scholar
  49. McDonald, S., Li, S., De Sousa, A., Rushby, J., Dimoska, A., James, C., & Tate, R. L. (2010). Impaired mimicry response to angry faces following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 33(1), 17–29.Google Scholar
  50. Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging Reviews, 1(2), 105–113.Google Scholar
  51. Miller, L., Hsieh, S., Lah, S., Savage, S., Hodges, J. R., & Piguet, O. (2012). One size does not fit all: Face emotion processing impairments in semantic dementia, behavioural-variant frontotemporal dementia and Alzheimer's disease are mediated by distinct cognitive deficits. Behavioural Neurology, 25, 53–60.Google Scholar
  52. Mills, C. K. (1912). The cerebral mechanisms of emotional expression. Transactions of the College of Physicians of Philadelphia, 34, 381–390.Google Scholar
  53. Mion, M., Patterson, K., Acosta-Cabronero, J., Pengas, G., Izquierdo-Garcia, D., Hong, Y. T., . . . Nestor, P. J. (2010). What the left and right anterior fusiform gyri tell us about semantic memory. Brain, 133(11), 3256–3268.Google Scholar
  54. Mioshi, E., Dawson, K., Mitchell, J., Arnold, R., & Hodges, J. R. (2006). The Addenbrooke's Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. International Journal of Geriatric Psychiatry, 21(11), 1078–1085.Google Scholar
  55. Mioshi, E., Hsieh, S., Savage, S., Hornberger, M., & Hodges, J. R. (2010). Clinical staging and disease progression in frontotemporal dementia. Neurology, 74(20), 1591–1597.Google Scholar
  56. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.Google Scholar
  57. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews: Neuroscience, 8(12), 976–987.Google Scholar
  58. Perry, R. J., Rosen, H. J., Kramer, J. H., Beer, J. S., Levenson, R. L., & Miller, B. L. (2001). Hemispheric dominance for emotions, empathy and social behaviour: Evidence from right and left handers with frontotemporal dementia. Neurocase, 7(2), 145–160.Google Scholar
  59. Piguet, O., Hornberger, M., Mioshi, E., & Hodges, J. R. (2011). Behavioural-variant frontotemporal dementia: Diagnosis, clinical staging, and management. The Lancet Neurology, 10(2), 162–172.Google Scholar
  60. Rascovsky, K., Hodges, J. R., Knopman, D. S., Mendez, M. F., Kramer, J. H., Neuhaus, J. M., . . . Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(9), 2456–2477.Google Scholar
  61. Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P., Perry, R. J., Schuff, N., Weiner, M., . . . Miller, B. L. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), 198–208.Google Scholar
  62. Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18, 712–721.Google Scholar
  63. Rushby, J. A., McDonald, S., Randall, R., de Sousa, A., Trimmer, E., & Fisher, A. (2013). Impaired emotional contagion following severe traumatic brain injury. International Journal of Psychophysiology, 89(3), 466–474.Google Scholar
  64. Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69(5), 379.Google Scholar
  65. Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). A second-person neuroscience in interaction. Behavioral and Brain Sciences, 36(4), 441–462.Google Scholar
  66. Schwartz, G. E., Davidson, R. J., & Maer, F. (1975). Right hemisphere lateralization for emotion in the human brain: Interactions with cognition. Science, 190(4211), 286–288.Google Scholar
  67. Seeley, W. W., Crawford, R., Rascovsky, K., Kramer, J. H., Weiner, M., Miller, B. L., & Gorno-Tempini, M. L. (2008). Frontal paralimbic network atrophy in very mild behavioural variant frontotemporal dementia. Archives of Neurology, 65(2), 249–255.Google Scholar
  68. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., . . . Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.Google Scholar
  69. Shany-Ur, T., & Rankin, K. P. (2011). Personality and social cognition in neurodegenerative disease. Current Opinion in Neurology, 24(6), 550–555.Google Scholar
  70. Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences, 13(8), 334–340.Google Scholar
  71. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., . . . Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(S1), 208–219.Google Scholar
  72. Sturm, V. E., McCarthy, M. E., Yun, I., Madan, A., Yuan, J. W., Holley, S. R., . . . Levenson, R. W. (2011). Mutual gaze in Alzheimer's disease, frontotemporal and semantic dementia couples. Social Cognition and Affective Neuroscience, 6(3), 359–367.Google Scholar
  73. Sturm, V. E., Rosen, H. J., Allison, S., Miller, B. L., & Levenson, R. W. (2006). Self-conscious emotion deficits in frontotemporal lobar degeneration. Brain, 129(9), 2508–2516.Google Scholar
  74. Sturm, V. E., Sollberger, M., Seeley, W. W., Rankin, K. P., Ascher, E. A., Rosen, H. J., . . . Levenson, R. W. (2013). Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity. Social Cognitive and Affective Neuroscience, 8(4), 468–474.Google Scholar
  75. Van Boxtel, A. (2010). Facial EMG as a tool for inferring affective states. Paper presented at the Proceedings of measuring behavior.Google Scholar
  76. Werner, K. H., Roberts, N. A., Rosen, H. J., Dean, D. L., Kramer, J. H., Weiner, M. W., . . . Levenson, R. W. (2007). Emotional reactivity and emotion recognition in frontotemporal lobar degeneration. Neurology, 69(2), 148–155.Google Scholar
  77. Williams, L. M., Das, P., Liddell, B., Olivieri, G., Peduto, A., Brammer, M. J., & Gordon, E. (2005). BOLD, sweat and fears: fMRI and skin conductance distinguish facial fear signals. Neuroreport, 16(1), 49–52.Google Scholar
  78. Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behren, T., . . . Smith, S. M. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage, 45, S173–186.Google Scholar
  79. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images though a hidden Markov random field model and the expectation-maximisation algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Fiona Kumfor
    • 1
    • 2
    • 3
    Email author
  • Jessica L. Hazelton
    • 1
    • 2
  • Jacqueline A. Rushby
    • 4
  • John R. Hodges
    • 2
    • 3
    • 5
  • Olivier Piguet
    • 1
    • 2
    • 3
  1. 1.School of PsychologyThe University of SydneySydneyAustralia
  2. 2.Brain and Mind CentreThe University of SydneySydneyAustralia
  3. 3.ARC Centre of Excellence in Cognition and its DisordersSydneyAustralia
  4. 4.School of PsychologyThe University of New South WalesSydneyAustralia
  5. 5.Sydney Medical School, Faculty of Health SciencesThe University of SydneySydneyAustralia

Personalised recommendations