Cognitive, Affective, & Behavioral Neuroscience

, Volume 19, Issue 1, pp 187–196 | Cite as

What you give is what you get: Payment of one randomly selected trial induces risk-aversion and decreases brain responses to monetary feedback

  • Barbara SchmidtEmail author
  • Luisa Keßler
  • Holger Hecht
  • Johannes Hewig
  • Clay B. Holroyd
  • Wolfgang H. R. Miltner


In economic studies, it is standard practice to pay out the reward of only one randomly selected trial (pay-one) instead of the total reward accumulated across trials (pay-all), assuming that both methods are equivalent. We tested this assumption by recording electrophysiological activity to reward feedback from participants engaged in a decision-making task under both a pay-one and a pay-all condition. We show that participants are approximately 12% more risk averse in the pay-one condition than in the pay-all condition. Furthermore, we observed that the electrophysiological response to monetary rewards, the reward positivity, is significantly reduced in the pay-one condition relative to the pay-all condition. The difference of brain responses is associated with the difference in risky behavior across conditions. We concluded that the two payment methods lead to significantly different results and are therefore not equivalent.


Economic research Risk behavior Payment method Reward positivity 



The authors thank Natalie Gittner, Tabitha Mantey, Sophie-Marie Rostalski, and Cerstin Seyboldt for help with data acquisition.

Author contributions

B. Schmidt developed the study concept. All authors contributed to the study design. Testing and data collection were performed by L. Keßler and H. Hecht. B. Schmidt performed the data analysis and interpretation under the supervision of C. B. Holroyd. B. Schmidt drafted the manuscript, and C. B. Holroyd, J. Hewig, and W. H. R. Miltner provided critical revisions. All authors approved the final version of the manuscript for submission.


  1. Baker, T. E., & Holroyd, C. B. (2011). Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and the N200. Biological Psychology, 87, 25-34. doi: CrossRefGoogle Scholar
  2. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25, 49-59. doi: CrossRefGoogle Scholar
  3. Cameron, L. A. (1999). Raising the stakes in the Ultimatum Game: Experimental evidence from Indonesia. Economic Inquiry, 37, 47-59. doi: CrossRefGoogle Scholar
  4. Carrillo-de-la-Pena, M. T., & Cadaveira, F. (2000). The effect of motivational instructions on P300 amplitude. Clinical Neurophysiology, 30, 232-239. doi: CrossRefGoogle Scholar
  5. Cherniawsky, A. S., & Holroyd, C. B. (2013). High temporal discounters overvalue immediate rewards rather than undervalue future rewards: an event-related potential study. Cognitive, Affective and Behavioral Neuroscience, 13, 36-45. doi: CrossRefGoogle Scholar
  6. Debener, S., Thorne, J., Schneider, T. R., & Viola, F. C. (2010). Using ICA for the analysis of multi-channel EEG data. In M. Ullsperger, & S. Debener (Eds.), Simultaneous EEG and fMRI: recording, analysis and application (pp. 121-134). Oxford, NY: Oxford University Press.CrossRefGoogle Scholar
  7. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi: CrossRefGoogle Scholar
  8. De Martino, B., Camerer, C. F., Adolphs, R. (2010). Amygdala damage eliminates monetary loss aversion. PNAS, 107, 3788-3792. doi: CrossRefGoogle Scholar
  9. Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 355-425.Google Scholar
  10. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191. doi: CrossRefGoogle Scholar
  11. Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279–2282. doi: CrossRefGoogle Scholar
  12. Charness, G., Gneezy, U., & Halladay, B. (2016). Experimental methods: Pay one or pay all. Journal of Economic Behavior and Organization, 131, 141-150. doi: CrossRefGoogle Scholar
  13. Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G. H., Holroyd, C. B., & Miltner, W. H. R. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67, 781-783. doi: CrossRefGoogle Scholar
  14. Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G. H., Holroyd, C. B., & Miltner, W. H. R. (2011). Why humans deviate from rational choice. Psychophysiology, 48, 507-514. doi: CrossRefGoogle Scholar
  15. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709. doi: CrossRefGoogle Scholar
  16. Holroyd, C. B., & Coles, M. G. H. (2008). Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex, 44, 548-559. doi: CrossRefGoogle Scholar
  17. Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E. (2008). The feedback correct-related positivity: sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45, 688-697. doi: CrossRefGoogle Scholar
  18. Holroyd, C. B., & Umemoto, A. (2016). The research domain criteria framework: The case for anterior cingulate cortex. Neuroscience and Biobehavioral Reviews, 71, 418–443. doi: CrossRefGoogle Scholar
  19. Huang, Y., Hu, P., & Li, X. (2017). Undervaluing delayed rewards explains adolescents’ impulsivity in intertemporal choice: an ERP study. Scientific Reports, 7, 42631. doi: CrossRefGoogle Scholar
  20. Kahneman, D. & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263-291. doi: CrossRefGoogle Scholar
  21. Kreussel, L., Hewig, J., Kretschmer, N., Hecht, H., Coles, M. G., & Miltner, W. H. (2012). The influence of the magnitude, probability, and valence of potential wins and losses on the amplitude of the feedback negativity. Psychophysiology, 49, 207–219. doi: CrossRefGoogle Scholar
  22. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology. doi:
  23. Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of subjective value under risk and ambiguity. Journal of Neurophysiology, 103, 1036-1047. doi: CrossRefGoogle Scholar
  24. Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490. doi: CrossRefGoogle Scholar
  25. Marco-Pallares, J., Cucurell, D., Münte, T. F., Strien, N., & Rodrigues-Fornells, A. (2011). On the number of trials needed for a stable feedback-related negativity. Psychophysiology, 48, 852-860. doi: CrossRefGoogle Scholar
  26. Miltner, W. H., Braun, C. H., & Coles, M. G. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of cognitive neuroscience, 9, 788–798. doi: CrossRefGoogle Scholar
  27. Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148. doi: CrossRefGoogle Scholar
  28. Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52, 449-459. doi: CrossRefGoogle Scholar
  29. R Development Core Team. (2016). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from (ISBN 3-900051-07-0)
  30. Rabin, M. (2000). Risk aversion and expected-utility theory: a calibration theorem. Econometrica, 68, 1281-1292. doi: CrossRefGoogle Scholar
  31. Sambrook, T. D., & Goslin, J. (2015). A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages. Psychological Bulletin, 141, 213-235. doi: CrossRefGoogle Scholar
  32. Sato, A., Yasuda, A., Ohira, H., Miyawaki, K., Nishikawa, M., Kumano, H., & Kuboki, T. (2005). Effects of value and reward magnitude on feedback negativity and P300. Cognitive Neuroscience and Neuropsychology, 16, 407-411.Google Scholar
  33. Schmidt, B., & Hewig, J. (2015). Paying out one or all trials: a behavioral economic evaluation of payment methods in a prototypical risky decision study. The Psychological Record, 65, 245-250. doi: CrossRefGoogle Scholar
  34. Schmidt, B., Holroyd, C. B., Debener, S., & Hewig, J. (2017). I can’t wait! Neural reward signals in impulsive individuals exaggerate the difference between immediate and future rewards. Psychophysiology, 54, 409-415. doi: CrossRefGoogle Scholar
  35. Schmidt, B., Kanis, H., Holroyd, C. B., Miltner, W. H. R., & Hewig J. (2018). Anxious gambling: Anxiety is associated with higher frontal midline theta predicting less risky decisions. Psychophysiology. doi:
  36. Schmidt, B., Mussel, P., & Hewig, J. (2013). I’m too calm—let’s take a risk! On the impact of state and trait arousal on risk taking. Psychophysiology, 50, 498–503. doi: CrossRefGoogle Scholar
  37. Thaler, R. H., Tversky, A., Kahneman, D., & Schwartz, A. (1997). The effect of myopia and loss aversion on risk taking: An experimental test. The Quarterly Journal of Economics, 112, 647-661. doi: CrossRefGoogle Scholar
  38. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297-323. doi: CrossRefGoogle Scholar
  39. Walsh, M. M. & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews, 36, 1870–1884. doi: CrossRefGoogle Scholar
  40. Wu, Y., & Zhou, X. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114-122. doi: CrossRefGoogle Scholar
  41. Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24, 6258-6264. doi: CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Barbara Schmidt
    • 1
    Email author
  • Luisa Keßler
    • 1
  • Holger Hecht
    • 1
  • Johannes Hewig
    • 2
  • Clay B. Holroyd
    • 3
  • Wolfgang H. R. Miltner
    • 1
  1. 1.Institute of PsychologyFriedrich Schiller University of JenaJenaGermany
  2. 2.Institute of PsychologyJulius Maximilians University of WürzburgWürzburgGermany
  3. 3.Department of PsychologyUniversity of VictoriaVictoriaCanada

Personalised recommendations