Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 19, Issue 1, pp 109–122 | Cite as

Age-related decline in emotional perspective-taking: Its effect on the late positive potential

  • Carina FernandesEmail author
  • A. R. Gonçalves
  • R. Pasion
  • F. Ferreira-Santos
  • F. Barbosa
  • I. P. Martins
  • J. Marques-Teixeira
Article
  • 105 Downloads

Abstract

Aging is associated with changes in cognitive and affective functioning, which likely shape older adults’ social cognition. As the neural and psychological mechanisms underlying age differences in social abilities remain poorly understood, the present study aims to extend the research in this field. To this purpose, younger (n = 30; Mage = 26.6), middle-aged (n = 30; Mage = 48.4), and older adults (n = 29; Mage = 64.5) performed a task designed to assess affective perspective-taking, during an EEG recording. In this task, participants decided whether a target facial expression of emotion (FEE) was congruent or incongruent with that of a masked intervener of a previous scenario, which portrayed a neutral or an emotional scene. Older adults showed worse performance in comparison to the other groups. Regarding electrophysiological results, while younger and middle-aged adults showed higher late positive potentials (LPPs) after FEEs congruent with previous scenarios than after incongruent FEEs, older adults had similar amplitudes after both. This insensitivity of older adults’ LPPs in differentiating congruent from incongruent emotional context-target FEE may be related to their difficulty in generating information about others’ inner states and using that information in social interactions.

Keywords

Aging Emotional processing Perspective-taking N170 Late positive potentials 

Notes

Acknowledgements

This research was supported by a Grant from the BIAL Foundation. Carina Fernandes was supported by a doctoral fellowship from the Fundação para a Ciência e a Tecnologia (SFRH/BD/112101/2015). We thank Brigit Derntl for her permission to use the stimuli displayed as scenarios in the emotional perspective-taking task, and Nim Tottenham for her permission to use the face stimuli displayed as target FEE. Development of the MacBrain Face Stimulus Set was overseen by Nim Tottenham and supported by the John D. and Catherine T. MacArthur Foundation Research Network on Early Experience and Brain Development. Please contact Dr. Nim Tottenham for more information concerning the stimulus set (nlt7@columbia.edu; http://danlab7.wixsite.com/nimstim). We also thank Programa de Estudos Universitários para Seniores and Associação de Aposentados Pensionistas e Reformados for their help in participant recruitment.

Supplementary material

13415_2018_648_MOESM1_ESM.docx (48 kb)
Table 1 (DOCX 48 kb)
13415_2018_648_MOESM2_ESM.docx (47 kb)
Table 2 (DOCX 46 kb)
13415_2018_648_MOESM3_ESM.docx (47 kb)
Table 3 (DOCX 46 kb)
13415_2018_648_MOESM4_ESM.docx (55 kb)
Table 4 (DOCX 55 kb)
13415_2018_648_MOESM5_ESM.docx (48 kb)
Table 5 (DOCX 47 kb)
13415_2018_648_MOESM6_ESM.docx (49 kb)
Table 6 (DOCX 49 kb)
13415_2018_648_MOESM7_ESM.docx (50 kb)
Table 7 (DOCX 50 kb)
13415_2018_648_MOESM8_ESM.docx (66 kb)
Table 8 (DOCX 65 kb)
13415_2018_648_MOESM9_ESM.docx (46 kb)
ESM 1 (DOCX 45 kb)

References

  1. Almeida, P. R., Ferreira-Santos, F., Chaves, P. L., Paiva, T. O., Barbosa, F., & Marques-Teixeira, J. (2016). Perceived arousal of facial expressions of emotion modulates the N170, regardless of emotional category: Time domain and time–frequency dynamics. International Journal of Psychophysiology, 99, 48-56.  https://doi.org/10.1016/j.ijpsycho.2015.11.017 Google Scholar
  2. Armitage, S. G. (1946). An analysis of certain psychological tests used for the evaluation of brain injury. Psychology Monographs, 60(1), 1-48.  https://doi.org/10.1037/h0093567 Google Scholar
  3. Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry, 38, 813-822.  https://doi.org/10.1111/j.1469-7610.1997.tb01599.x Google Scholar
  4. Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551-565.  https://doi.org/10.1162/jocn.1996.8.6.551 Google Scholar
  5. Boake, C. (2000). Édouard Claparède and the Auditory Verbal Learning Test. Journal of Clinical and Experimental Neuropsychology, 22(2), 286–292.  https://doi.org/10.1076/1380-3395(200004)22:2;1-1;FT286 Google Scholar
  6. Bowman, L. C., Liu, D., Meltzoff, A. N., & Wellman, H. M. (2012). Neural correlates of belief-and desire-reasoning in 7-and 8-year-old children: an event-related potential study. Developmental Science, 15(5), 618-632.  https://doi.org/10.1111/j.1467-7687.2012.01158.x Google Scholar
  7. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD Model. Psychology and Aging, 17(1), 85-100.Google Scholar
  8. Canavarro, M. C. (1999). Inventário de sintomas psicopatológicos - BSI. Em M. G. M. R. Simões, Testes e Provas Psicológicas em Portugal (Vol. II) (pp. 87-109). Braga: SHO/APPORT.Google Scholar
  9. Castelli, I., Baglio, F., Blasi, V. A., Falini, A., Liverta-Sempio, O., & Marchetti, A. (2010). Effects of aging on mindreading ability through the eyes: an fMRI study. Neuropsychologia, 48(9), 2586–2594.  https://doi.org/10.1016/j.neuropsychologia.2010.05.005 Google Scholar
  10. Cavaco, S., Gonçalves, A., Pinto, C., Almeida, E., Gomes, F., Moreira, I., … Teixeira-Pinto, A. (2013a). Semantic fluency and phonemic fluency: regression-based norms for the Portuguese population. Archives of Clinical Neuropsychology, 28(3), 262-271.  https://doi.org/10.1093/arclin/act001 Google Scholar
  11. Cavaco, S., Gonçalves, A., Pinto, C., Almeida, E., Gomes, F., Moreira, I., … Teixeira-Pinto, A. (2013b). Trail Making Test: Regression-based norms for the Portuguese population. Archives of Clinical Neuropsychology, 28(2), 189-198.  https://doi.org/10.1093/arclin/acs Google Scholar
  12. Cavaco, S., Gonçalves, A., Pinto, C., Almeida, E., Gomes, F., Moreira, I., … Teixeira-Pinto, A. (2015). Auditory Verbal Learning Test in a large nonclinical Portuguese population. Applied Neuropsychology: Adult, 22(5), 321-331.  https://doi.org/10.1080/23279095.2014.927767 Google Scholar
  13. Christov-Moore, L., Simpson, E. A., Coudé, G., Grigaityte, K., Iacoboni, M., & Ferrari, P. F. (2014). Empathy: gender effects in brain and behavior. Neuroscience & Biobehavioral Reviews, 46, 604-627.Google Scholar
  14. Cowell, J. M., & Decety, J. (2015). Precursors to morality in development as a complex interplay between neural, socioenvironmental, and behavioral facets. Proceedings of the National Academy of Sciences, 112(41), 12657-12662.  https://doi.org/10.1073/pnas.1508832112 Google Scholar
  15. Danker, J. F., Hwang, G. M., Gauthier, L., Geller, A., Kahana, M. J., & Sekuler, R. (2008). Characterizing the ERP Old–New effect in a short-term memory task . Psychophysiology, 45, 784-793.  https://doi.org/10.1111/j.1469-8986.2008.00672.x Google Scholar
  16. David, N., Aumann, C., Santos, N. S., Bewernick, B. H., Eickhoff, S. B., Newen, A., ... & Vogeley, K. (2008). Differential involvement of the posterior temporal cortex in mentalizing but not perspective taking. Social Cognitive and Affective Neuroscience, 3(3), 279-289.  https://doi.org/10.1093/scan/nsn023 Google Scholar
  17. Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113.  https://doi.org/10.1037/0022-3514.44.1.113 Google Scholar
  18. Decety, J., & Jackson, P. L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3(2), 71-100.Google Scholar
  19. Decety, J., Yang, C. Y., & Cheng, Y. (2010). Physicians down-regulate their pain empathy response: an event-related brain potential study. Neuroimage, 50(4), 1676-1682.  https://doi.org/10.1016/j.neuroimage.2010.01.025 Google Scholar
  20. Delorme, A., & Makeig, S. (2004). An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.  https://doi.org/10.1016/j.jneumeth.2003.10.009 Google Scholar
  21. Derntl, B., Finkelmeyer, A., Toygar, T. K., Hülsmann, A., Schneider, F., Falkenberg, D. I., & Habel, U. (2009). Generalized deficit in all core components of empathy in schizophrenia. Schizophrenia Research, 108(1), 197-206.  https://doi.org/10.1016/j.schres.2008.11.009 Google Scholar
  22. Derogatis, L. R. (1982/1993). BSI: Brief Symptom Inventory (3rd ed.). Minneapolis: National Computers Systems.Google Scholar
  23. Diéguez-Risco, T., Aguado, L., Albert, J., & Hinojosa, J. A. (2013). Faces in context:modulation of expression processing by situational information. Social Neuroscience, 8(6), 601–620.  https://doi.org/10.1080/17470919.2013.834842 Google Scholar
  24. Diéguez-Risco, T., Aguado, L., Albert, J., & Hinojosa, J. A. (2015). Judging emotional congruency: Explicit attention to situational context modulates processing of facial expressions of emotion. Biological Psychology, 112, 27-38.  https://doi.org/10.1016/j.biopsycho.2015.09.012 Google Scholar
  25. Dozolme, D., Brunet-Gouet, E., Passerieux, C., & Amorim, M. (2015). Neuroelectric correlates of pragmatic emotional incongruence processing:empathy matters. PLOS One, 10(6), e0129770.  https://doi.org/10.1371/journal.pone.0129770 Google Scholar
  26. Fernandes, C., Pasion, R., Gonçalves, A. R., Ferreira-Santos, F., Barbosa, F., Martins, I. P., & Marques-Teixeira, J. (2018). Age differences in neural correlates of feedback processing after economic decisions under risk. Neurobiology of aging, 65, 51-59.Google Scholar
  27. Foti, D., & Hajcak, G. (2008). Deconstructing reappraisal: Descriptions preceding arousing pictures modulate the subsequent neural response. Journal of Cognitive Neuroscience, 20(6), 977-988.  https://doi.org/10.1162/jocn.2008.20066 Google Scholar
  28. Freitas, S., Simões, M. R., & Santana, I. (2014). Montreal Cognitive Assessment (MoCA): Pontos de corte no Défice Cognitivo Ligeiro, Doença de Alzheimer, Demência Frontotemporal e Demência Vascular. Sinapse,14, 18-30.Google Scholar
  29. Gao, L., Xu, J., Zhang, B., Zhao, L., Harel, A., & Bentin, S. (2009). Aging effects on early-stage face perception: An ERP study. Psychophysiology, 46(5), 970-983.  https://doi.org/10.1111/j.1469-8986.2009.00853.x Google Scholar
  30. Gonçalves, A. R., Fernandes, C., Pasion, R., Ferreira-Santos, F., Barbosa, F., & Marques-Teixeira, J. (2018a). Effects of age on the identification of emotions in facial expressions: a meta-analysis. PeerJ, 6, e5278.Google Scholar
  31. Gonçalves, A. R., Fernandes, C., Pasion, R., Ferreira-Santos, F., Barbosa, F., & Marques-Teixeira, J. (2018b). Emotion identification and aging: Behavioral and neural age-related changes. Clinical Neurophysiology, 129(5), 1020-1029.  https://doi.org/10.1016/j.clinph.2018.02.128 Google Scholar
  32. Happé, F. G. (1994). An advanced test of theory of mind: Understanding of story characters' thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. Journal of Autism and Developmental Disorders, 24, 129-154.Google Scholar
  33. Henry, J. D., Phillips, L. H., Ruffman, T., & Bailey, P. E. (2013). A meta-analytic review of age differences in theory of mind. Psychology and Aging, 28(3), 826-839.  https://doi.org/10.1037/a0030677 Google Scholar
  34. Herring, D. R., Taylor, J. H., White, K. R., & Crites, S. L. (2011). Electrophysiological responses to evaluative priming: the LPP is sensitive to incongruity. Emotion, 11(4), 794–806.  https://doi.org/10.1037/a0022804 Google Scholar
  35. Hietanen, J. K., & Astikainen, P. (2013). N170 response to facial expressions is modulated by the affective congruency between the emotional expression and preceding affective picture. Biological Psychology, 92(2), 114-124.  https://doi.org/10.1016/j.biopsycho.2012.10.005 Google Scholar
  36. Hinojosa, J. A., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: A meta-analysis. Neuroscience & Biobehavioral Reviews, 55, 498-509.  https://doi.org/10.1016/j.neubiorev.2015.06.002 Google Scholar
  37. Jackson, P. L., Meltzoff, A. N., & Decety, J. (2006). Neural circuits involved in imitation and perspective-taking. Neuroimage, 31(1), 429-439.  https://doi.org/10.1016/j.neuroimage.2005.11.026 Google Scholar
  38. Kelley, W. M., Miezin, F. M., McDermott, K. B., Buckner, R. L., Raichle, M. E., Cohen, N. J., … Petersen, S. E. (1998). Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron, 20(5), 927-936.  https://doi.org/10.1016/S0896-6273(00)80474-2 Google Scholar
  39. Kisley, M. A., Wood, S., & Burrows, C. L. (2007). Looking at the sunny side of life: Age-related change in an event-related potential measure of the negativity bias. Psychological Science, 18(9), 838-843.Google Scholar
  40. Komes, J., Schweinberger, S. R., & Wiese, H. (2014). Preserved fine-tuning of face perception and memory: evidence from the own-race bias in high-and low-performing older adults. Frontiers in Aging Neuroscience, 6, 60.  https://doi.org/10.3389/fnagi.2014.00060 Google Scholar
  41. Li, W., & Han, S. (2010). Perspective taking modulates event-related potentials to perceived pain. Neuroscience Letters, 469(3), 328-332.  https://doi.org/10.1016/j.neulet.2009.12.021 Google Scholar
  42. Liao, X., Wang, K., Lin, K., Chan, R. C., & Zhang, X. (2017). Neural temporal dynamics of facial emotion processing: age effects and relationship to cognitive function. Frontiers in Psychology, 8, 1110.  https://doi.org/10.3389/fpsyg.2017.01110 Google Scholar
  43. Liu, D., Meltzoff, A. N., & Wellman, H. M. (2009). Neural Correlates of Belief-and Desire-Reasoning. Child Development, 80(4), 1163-1171.  https://doi.org/10.1111/j.1467-8624.2009.01323.x Google Scholar
  44. Liu, D., Sabbagh, M. A., Gehring, W. J., & Wellman, H. M. (2004). Decoupling beliefs from reality in the brain: an ERP study of theory of mind. NeuroReport, 15, 991-995.  https://doi.org/10.1097/01.wnr.0000123388.87650.06 Google Scholar
  45. Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10) 496-502.  https://doi.org/10.1016/j.tics.2005.08.005 Google Scholar
  46. McCleery, J. P., Surtees, A. D., Graham, K. A., Richards, J. E., & Apperly, I. A. (2011). The neural and cognitive time course of theory of mind. Journal of Neuroscience, 31(36), 12849-12854.  https://doi.org/10.1523/JNEUROSCI.1392-11.2011 Google Scholar
  47. Meinhardt, J., Sodian, B., Thoermer, C., Döhnel, K., & Sommer, M. (2011). True-and false-belief reasoning in children and adults: An event-related potential study of theory of mind. Developmental Cognitive Neuroscience, 1(1), 67-76.  https://doi.org/10.1016/j.dcn.2010.08.001 Google Scholar
  48. Moran, J. M. (2013). Lifespan development: The effects of typical aging on theory of mind. Behavioural Brain Research, 237, 32-40.  https://doi.org/10.1016/j.bbr.2012.09.020 Google Scholar
  49. Moran, J. M., Jolly, E., & Mitchell, J. P. (2012). Social-cognitive deficits in normal aging. Journal of Neuroscience, 32(16), 5553-5561.Google Scholar
  50. Moreira, H. S., Lima, C. F., & Vicente, S. G. (2014). Examining Executive Dysfunction with the Institute of Cognitive Neurology (INECO) Frontal Screening (IFS): normative values from a healthy sample and clinical utility in Alzheimer's disease. Journal of Alzheimer's Disease, 42(1), 261-273.  https://doi.org/10.3233/JAD-132348 Google Scholar
  51. Morioka, S., Osumi, M., Shiotani, M., Nobusako, M., Maeoka, H., Okada, Y., … Matsuo, A. (2016). Incongruence between Verbal and Non-Verbal Information Enhances the Late Positive Potential. PloS One, 11, 1-11.  https://doi.org/10.1371/journal.pone.0164633 Google Scholar
  52. Münte, T. F., Urbach, T. P., Duzel, E., & Kutas, M. (2000). Event-related brain potentials in the study of human cognition and neuropsychology. Em F. Boller, G. J., & G. Rizzolatti, Handbook of Neuropsychology, Vol. 1, 2nd edition (pp. 1–97). Netherlands: Elsevier Science Publishers.Google Scholar
  53. Musial, P. G., Baker, S. N., Gerstein, G. L., King, E. A., & Keating, J. G. (2002). Signal-to-noise ratio improvement in multiple electrode recording. Journal of neuroscience methods, 115(1), 29-43.  https://doi.org/10.1016/S0165-0270(01)00516-7 Google Scholar
  54. Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation? Gerontology, 58(2), 156-163.  https://doi.org/10.1159/000328465 Google Scholar
  55. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S. V., Whitehead, I., Collin, I., … Chertkow, H., (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x Google Scholar
  56. O’Brien, E., Konrath, S. H., Grühn, D., & Hagen, A. L. (2012). Empathic concern and perspective taking: Linear and quadratic effects of age across the adult life span. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 68(2), 168-175.  https://doi.org/10.1093/geronb/gbs055 Google Scholar
  57. Pais-Ribeiro, J., Silva, I., Ferreira, T., Martins, A., Meneses, R., & Baltar, M. (2007). Validation study of a Portuguese version of the Hospital Anxiety and Depression Scale. Psychology, Health & Medicine, 12(2), 225-237.  https://doi.org/10.1080/13548500500524088 Google Scholar
  58. Pasion, R., Fernandes, C., Gonçalves, A. R., Ferreira-Santos, F., Páscoa, R., Barbosa, F., & Marques-Teixeira, J. (2018). The effect of aging on the (mis) perception of intentionality-an ERP study. Social Neuroscience  https://doi.org/10.1080/17470919.2018.1430614
  59. Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and clinical neurophysiology, 72(2), 184-187.  https://doi.org/10.1016/0013-4694(89)90180-6 Google Scholar
  60. Renfroe, J. B., Bradley, M. M., Sege, C. T., & Bowers, D. (2016). Emotional modulation of the late positive potential during picture free viewing in older and young adults. PloS One, 11(9), e0162323.  https://doi.org/10.1371/journal.pone.0162323 Google Scholar
  61. Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177-182.Google Scholar
  62. Righart, R., & de Gelder, B. (2006). Context influences early perceptual analysis offaces an electrophysiological study. Cerebral Cortex, 16(9), 1249–1257.  https://doi.org/10.1093/cercor/bhj066
  63. Righart, R., & de Gelder, B. (2008a). Rapid influence of emotional scenes onencoding of facial expressions: an ERP study. Social, Cognitive and Affective Neuroscience, 3(3), 270–278.  https://doi.org/10.1093/scan/nsn021
  64. Righart, R., & de Gelder, B. (2008b). Recognition of facial expressions is influencedby emotional scene gist. Cognitive, Affective, and Behavioral Neuroscience, 8(3), 264–272.  https://doi.org/10.3758/CABN.8.3.264
  65. Rossion, B., & Jacques, C. (2008). Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. Neuroimage, 39(4), 1959-1979.  https://doi.org/10.1016/j.neuroimage.2007.10.011 Google Scholar
  66. Ruffman, T., Henry, J. D., Livingstone, V., & Phillips, L. H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience & Biobehavioral Reviews, 32(4), 863-881.  https://doi.org/10.1016/j.neubiorev.2008.01.001 Google Scholar
  67. Sabbagh, M. A., & Taylor, M. (2000). Neural correlates of theory-of-mind reasoning: an event-related potential study. Psychological Science, 11(1), 46-50.Google Scholar
  68. Snaith, R. P., & Zigmond, A. P. (1994). The Hospital Anxiety and Depression Scale Manual. Windsor: NFER-Nelson.Google Scholar
  69. Strauss, E., Sherman, E. M., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd). New York: Oxford University Press.Google Scholar
  70. Torralva, T., Roca, M., Gleichgerrcht, E., Lopez, P., & Manes, F. (2009). INECO Frontal Screening (IFS): A brief, sensitive, and specific tool to assess executive functions in dementia. Journal of the International Neuropsychological Society, 15(5), 777-786.  https://doi.org/10.1017/S1355617709990415 Google Scholar
  71. Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., … Nelson, C. (2009). The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Research, 168(3), 242-249.  https://doi.org/10.1016/j.psychres.2008.05.006 Google Scholar
  72. Wang, Y. W., Lin, C. D., Yuan, B., Huang, L., Zhang, W. X., & Shen, D. L. (2010). Person perception precedes theory of mind: an event related potential analys. Neuroscience, 170(1), 238-246.  https://doi.org/10.1016/j.neuroscience.2010.06.055 Google Scholar
  73. Wechsler, D. (2008). WMS - III. Escala de memória de Wechsler. Lisboa: CEGOC-TEA.Google Scholar
  74. Weinberg, A., & Hajcak, G. (2010). Beyond good and evil: The time-course of neural activity elicited by specific picture content. Emotion, 10(6), 767.Google Scholar
  75. Werheid, K., Alpay, G., Jentzsch, I., & Sommer, W. (2005). Priming emotional facial expressions as evidenced by event-related brain potentials. International Journal of Psychophysiology, 55(2), 209-219.  https://doi.org/10.1016/j.ijpsycho.2004.07.006 Google Scholar
  76. Wood, S., & Kisley, M. A. (2006). The negativity bias is eliminated in older adults: age-related reduction in event-related brain potentials associated with evaluative categorization. Psychology and Aging, 21(4), 815.  https://doi.org/10.1037/0882-7974.21.4.815 Google Scholar
  77. Wronka, E., & Walentowska, W. (2011). Attention modulates emotional expression processing. Psychophysiology, 48(8), 1047-1056.  https://doi.org/10.1111/j.1469-8986.2011.01180.x Google Scholar
  78. Yi, D., Chu, K., Ko, H., Lee, Y., Byun, M. S., Lee, J. H., & Lee, D. Y. (2017). Changes in perspective taking ability in aging process are dependent on gender and alzheimer-related cognitive decline. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 13(7), P369.  https://doi.org/10.1016/j.jalz.2017.06.319 Google Scholar
  79. Yoder, K. J., & Decety, J. (2014). Spatiotemporal neural dynamics of moral judgment: a high-density ERP study. Neuropsychologia, 60, 39-45.  https://doi.org/10.1016/j.neuropsychologia.2014.05.022 Google Scholar
  80. Zeman, P. M., Till, B. C., Livingston, N. J., Tanaka, J. W., & Driessen, P. F. (2007). Independent component analysis and clustering improve signal-to-noise ratio for statistical analysis of event-related potentials. Clinical Neurophysiology, 118(12), 2591-2604.  https://doi.org/10.1016/j.clinph.2007.09.001 Google Scholar
  81. Zhang, Q., Li, X., Gold, B. T., & Jiang, Y. (2010). Neural correlates of cross-domain affective priming. Brain Research, 1329, 142-151.  https://doi.org/10.1016/j.brainres.2010.03.021 Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Laboratory of Neuropsychophysiology, Faculty of Psychology and Education SciencesUniversity of PortoPortoPortugal
  2. 2.Faculty of MedicineUniversity of PortoPortoPortugal
  3. 3.Language Research Laboratory, Institute of Molecular Medicine, Faculty of MedicineUniversity of LisbonLisboaPortugal

Personalised recommendations