Musical chords and emotion: Major and minor triads are processed for emotion

  • David Radford Bakker
  • Frances Heritage MartinEmail author


Musical chords are arguably the smallest building blocks of music that retain emotional information. Major chords are generally perceived as positive- and minor chords as negative-sounding, but there has been debate concerning how early these emotional connotations may be processed. To investigate this, emotional facial stimuli and musical chord stimuli were simultaneously presented to participants, and facilitation of processing was measured via event-related potential (ERP) amplitudes. Decreased amplitudes of the P1 and N2 ERP components have been found to index the facilitation of early processing. If simultaneously presented musical chords and facial stimuli are perceived at early stages as belonging to the same emotional category, then early processing should be facilitated for these congruent pairs, and ERP amplitudes should therefore be decreased as compared to the incongruent pairs. ERPs were recorded from 30 musically naive participants as they viewed happy, sad, and neutral faces presented simultaneously with a major or minor chord. When faces and chords were presented that contained congruent emotional information (happy–major or sad–minor), processing was facilitated, as indexed by decreased N2 ERP amplitudes. This suggests that musical chords do possess emotional connotations that can be processed as early as 200 ms in naive listeners. The early stages of processing that are involved suggest that major and minor chords have deeply connected emotional meanings, rather than superficially attributed ones, indicating that minor triads possess negative emotional connotations and major triads possess positive emotional connotations.


Emotion Music Musical chords processing Face processing N2 


Author note

The authors thank the participants in this study for their tireless efforts.


  1. Altenmüller, E., Schürmann, K., Lim, V. K., & Parlitz, D. (2002). Hits to the left, flops to the right: Different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia, 40, 2242–2256. doi: 10.1016/S0028-3932(02)00107-0 PubMedGoogle Scholar
  2. Balconi, M., & Lucchiari, C. (2007). Consciousness and emotional facial expression recognition. Journal of Psychophysiology, 21, 100–108. doi: 10.1027/0269-8803.21.2.100 Google Scholar
  3. Balconi, M., & Pozzoli, U. (2003). Face-selective processing and the effect of pleasant and unpleasant emotional expressions on ERP correlates. International Journal of Psychophysiology, 49, 67–74. doi: 10.1016/S0167-8760(03)00081-3 PubMedGoogle Scholar
  4. Balconi, M., & Pozzoli, U. (2012). Encoding of emotional facial expressions in direct and incidental tasks: An event-related potentials N200 effect. Journal of Neurotherapy, 16, 92–109. doi: 10.1080/10874208.2012.677659 Google Scholar
  5. Balkwill, L.-L., & Thompson, W. F. (1999). A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception, 17, 43–64. doi: 10.2307/40285811 Google Scholar
  6. Baumgartner, T., Esslen, M., & Jäncke, L. (2006). From emotion perception to emotion experience: Emotions evoked be pictures and classical music. International Journal of Psychophysiology, 60, 34–43. doi: 10.1016/j.ijpsycho.2005.04.007 PubMedGoogle Scholar
  7. Beauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41, 809–823. doi: 10.1016/S0896-6273(04)00070-4 PubMedGoogle Scholar
  8. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300. doi: 10.1016/S0166-4328(01)00297-2 Google Scholar
  9. Besson, M., & Faïta, F. (1995). An event-related potential (ERP) study of musical expectancy: Comparison of musicians with nonmusicians. Journal of Experimental Psychology: Human Perception and Performance, 21, 1278–1296. doi: 10.1037/0096-1523.21.6.1278 Google Scholar
  10. Bigand, E., Filipic, S., & Lalitte, P. (2005). The time course of emotional responses to music. Annals of the New York Academy of Sciences, 1060, 429–437. doi: 10.1196/annals.1360.036 PubMedGoogle Scholar
  11. Blau, V. C., Maurer, U., Tottenham, N., & McCandliss, B. D. (2007). The face-specific N170 component is modulated by emotional facial expression. Behavioral and Brain Functions, 3, 7–20. doi: 10.1186/1744-9081-3-7 PubMedCentralPubMedGoogle Scholar
  12. Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98, 11818–11823. doi: 10.1073/pnas.191355898 Google Scholar
  13. Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2, 382–387. doi: 10.1038/7299 PubMedGoogle Scholar
  14. Bombari, D., Schmid, P. C., Mast, M. S., Birri, S., Mast, F. W., & Lobmaier, J. S. (2013). Emotion recognition: The role of featural and configural face information. Quarterly Journal of Experimental Psychology, 66, 2426–2442. doi: 10.1080/17470218.2013.789065 Google Scholar
  15. Bostanov, V., & Kotchoubey, B. (2004). Recognition of affective prosody: Continuous wavelet measures of event-related brain potentials to emotional exclamations. Psychophysiology, 41, 259–268. doi: 10.1111/j.1469-8986.2003.00142.x PubMedGoogle Scholar
  16. Calvo, M. G., & Nummenmaa, L. (2007). Processing of unattended emotional visual scenes. Journal of Experimental Psychology: General, 136, 347–369. doi: 10.1037/0096-3445.136.3.347 Google Scholar
  17. Cohen, A. J. (2010). Music as a source of emotion in film. In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: Theory, research, applications (pp. 879–908). Oxford, UK: Oxford University Press.Google Scholar
  18. Cook, N. D. (2007). The sound symbolism of major and minor harmonies. Music Perception, 24, 315–319. doi: 10.1525/MP.2007.24.3.315 Google Scholar
  19. Cook, N. D. (2009). Harmony perception: Harmoniousness is more than the sum of interval consonance. Music Perception, 27, 25–41. doi: 10.1525/MP.2009.27.1.25 Google Scholar
  20. Cook, N. D. (2012). Harmony, perspective, and triadic cognition. Cambridge, UK: Cambridge University Press.Google Scholar
  21. Cook, N. D., & Fujisawa, T. X. (2006). The psychophysics of harmony perception: Harmony is a three-tone phenomenon. Empirical Musicology Review, 1, 106–124.Google Scholar
  22. Cook, N. D., Fujisawa, T. X., & Takami, K. (2006). Evaluation of the affective valence of speech using pitch substructure. IEEE Transactions on Audio, Speech, and Language Processing, 14, 142–151. doi: 10.1109/TSA.2005.854115 Google Scholar
  23. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for Psychology, 1, 42–45.Google Scholar
  24. Crowder, R. G. (1984). Perception of the major/minor distinction: I. Historical and theoretical foundations. Psychomusicology, 4, 3–12.Google Scholar
  25. Davidson, R. J., Schwartz, G. E., Pugash, E., & Bromfield, E. (1976). Sex differences in patterns of EEG asymmetry. Biological Psychology, 4, 119–138. doi: 10.1016/0301-0511(76)90012-0 PubMedGoogle Scholar
  26. Dowling, W. J., & Harwood, D. L. (1986). Music cognition. San Diego, CA: Academic Press.Google Scholar
  27. Eimer, M., Goschke, T., Schlaghecken, F., & Stürmer, B. (1996). Explicit and implicit learning of event sequences: Evidence from event-related brain potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 4, 970–987. doi: 10.1037/0278-7393.22.4.970 Google Scholar
  28. Eimer, M., & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45, 15–31. doi: 10.1016/j.neuropsychologia.2006.04.022 PubMedCentralPubMedGoogle Scholar
  29. Eimer, M., Holmes, A., & McGlone, F. P. (2003). The role of spatial attention in the processing of facial expression: An ERP study of rapid brain responses to six basic emotions. Cognitive, Affective, & Behavioural Neuroscience, 3, 97–110. doi: 10.3758/CABN.3.2.97 Google Scholar
  30. Ekman, P., & Friesen, W. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  31. Eschrich, S., Münte, T. F., & Altenmüller, E. O. (2008). Unforgettable film music: The role of emotion in episodic long-term memory for music. BMC Neuroscience, 9, 48. doi: 10.1186/1471-2202-9-48 PubMedCentralPubMedGoogle Scholar
  32. Fadiga, L., Craighero, L., & Roy, A. (2006). Broca’s region: A speech area? In Y. Grodzinsky & K. Amunts (Eds.), Broca’s region (pp. 137–152). Oxford, UK: Oxford University Press.Google Scholar
  33. Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London, UK: Sage.Google Scholar
  34. Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, C., Bakken, H., Arezzo, J. C., & Steinschnieder, M. (2001). Consonance and dissonance of musical chords: Neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology, 86, 2761–2788.PubMedGoogle Scholar
  35. Fritz, T., & Koelsch, S. (2008). The role of semantic association and emotional contagion for the induction of emotion with music. Behavioral and Brain Sciences, 31, 579–580. doi: 10.1017/S0140525X08005347 Google Scholar
  36. Gagnon, L., & Peretz, I. (2003). Mode and tempo relative contributions to “happy–sad” judgements in equitone melodies. Cognition and Emotion, 17, 25–40. doi: 10.1080/02699930302279 Google Scholar
  37. Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23, 9240–9245. doi: 10.1016/S1053-8119(01)92488-7 PubMedGoogle Scholar
  38. Giard, M. H., & Peronnet, F. (1999). Auditory–visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11, 473–490. doi: 10.1162/089892999563544 PubMedGoogle Scholar
  39. Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Emotions over time: Synchronicity and development of subjective, physiological, and facial affective reactions to music. Emotion, 7, 774–788. doi: 10.1037/1528-3542.7.4.774 PubMedGoogle Scholar
  40. Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416–423. doi: 10.1016/j.tics.2005.07.004 PubMedGoogle Scholar
  41. Hajcak, G., & Olvet, D. M. (2008). The persistence of attention to emotion: Brain potentials during and after picture presentation. Emotion, 8, 250–255. doi: 10.1037/1528-3542.8.2.250 PubMedGoogle Scholar
  42. Halpern, A. R., Martin, J. S., & Reed, T. D. (2008). An ERP study of major-minor classification in melodies. Music Perception, 25, 181–191. doi: 10.1525/MP.2008.25.3.181 Google Scholar
  43. Heller, W. (1993). Neuropsychological mechanisms of individual differences in emotion, personality, and arousal. Neuropsychology, 7, 476–489. doi: 10.1037/0894-4105.7.4.476 Google Scholar
  44. Helmholtz, H. von. (1954). On the sensations of tone as a physiological basis for the theory of music (A. J. Ellis, Ed.; 2nd English ed.). New York, NY: Dover. (Original work published 1877)Google Scholar
  45. Herring, D. R., Taylor, J. H., White, K. R., & Crites, S. L. (2011). Electrophysiological responses to evaluative priming: The LPP is sensitive to incongruity. Emotion, 11, 794–806. doi: 10.1037/a0022804 PubMedGoogle Scholar
  46. Hoch, L., & Tillmann, B. (2010). Laterality effects for musical structure processing: A dichotic listening study. Neuropsychology, 24, 661–666. doi: 10.1037/a0019653 PubMedGoogle Scholar
  47. Howard, R. C. (2001). Bringing brain events to mind: Functional systems and brain event-related potentials. Journal of Psychophysiology, 15, 69–79. doi: 10.1027/0269-8803.15.2.69 Google Scholar
  48. Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50, 1814–1822. doi: 10.1016/j.neuropsychologia.2012.04.006 PubMedGoogle Scholar
  49. Jasper, H. H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and Clinical Neuropsychology, 10, 371–375. doi: 10.1016/0013-4694(58)90053-1 Google Scholar
  50. Joanisse, M. F., Zevin, J. D., & McCandliss, B. D. (2007). Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using fMRI and a short-interval habituation trial paradigm. Cerebral Cortex, 17, 2084–2093. doi: 10.1093/cercor/bhl124 PubMedGoogle Scholar
  51. Jongsma, M. L. A., Eichele, T., Van Rijn, C. M., Coenen, A. M. L., Hugdahl, K., Nordby, H., & Quiroga, R. Q. (2006). Tracking pattern learning with single-trial event-related potentials. Clinical Neurophysiology, 117, 1957–1973. doi: 10.1016/j.clinph.2006.05.012 PubMedGoogle Scholar
  52. Joyce, C., & Rossion, B. (2005). The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site. Clinical Neurophysiology, 116, 2613–2631. doi: 10.1016/j.clinph.2005.07.005 PubMedGoogle Scholar
  53. Juslin, P. N., Liljeström, S., Västfjäll, D., Barradas, G., & Silva, A. (2008). An experience sampling study of emotional reactions to music: Listener, music, and situation. Emotion, 8, 668–683. doi: 10.1037/a0013505 PubMedGoogle Scholar
  54. Juslin, P. N., Liljeström, S., Västfjäll, D., & Lundqvist, L. (2010). How does music evoke emotions? Exploring the underlying mechanisms. In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: Theory, research, applications (pp. 605–642). Oxford, UK: Oxford University Press.Google Scholar
  55. Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: The need to consider underlying mechanisms. Behavioural and Brain Sciences, 31, 559–621. doi: 10.1017/S0140525X08005293 Google Scholar
  56. Kestenbaum, R. (1992). Feeling happy versus feeling good: The processing of discrete and global categories of emotional expressions by children and adults. Developmental Psychology, 28, 1132–1142. doi: 10.1037/0012-1649.28.6.1132 Google Scholar
  57. Klein, M. E., & Zatorre, R. J. (2011). A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia, 49, 878–887. doi: 10.1016/j.neuropsychologia.2011.01.008 PubMedGoogle Scholar
  58. Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25, 1068–1076. doi: 10.1016/j.neuroimage.2004.12.050 PubMedGoogle Scholar
  59. Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 12, 520–541. doi: 10.1162/089892900562183 PubMedGoogle Scholar
  60. Koelsch, S., Maess, B., Grossmann, T., & Friederici, A. D. (2003). Electric brain responses reveal gender differences in music processing. NeuroReport, 14, 709–713. doi: 10.1097/ 01.wnr.0000065762.60383.67 PubMedGoogle Scholar
  61. Koelsch, S., Schröger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. NeuroReport, 10, 1309–1313. doi: 10.1097/00001756-199904260-00029 PubMedGoogle Scholar
  62. Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews. Neuroscience, 11, 599–605. doi: 10.1038/nrn2882 PubMedGoogle Scholar
  63. Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205. doi: 10.1126/science.7350657 PubMedGoogle Scholar
  64. Laukka, P., Eerola, T., Thinguam, N. S., Yamasaki, T., & Beller, G. (2013). Universal and culture-specific factors in the recognition and performance of musical affect expressions. Emotion, 13, 434–449. doi: 10.1037/a0031388 PubMedGoogle Scholar
  65. Levett, C., & Martin, F. (1992). The relationship between complex music stimuli and the late components of the event-related potential. Psychomusicology, 11, 125–140. doi: 10.1037/h0094126 Google Scholar
  66. Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15, 1621–1631. doi: 10.1093/cercor/bhi040 PubMedGoogle Scholar
  67. Lima, C. F., & Castro, S. L. (2011). Speaking to the trained ear: Musical expertise enhances the recognition of emotions in speech prosody. Emotion, 11, 1021–1031. doi: 10.1037/a0024521 PubMedGoogle Scholar
  68. Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subjects designs. Psychonomic Bulletin & Review, 1, 476–490. doi: 10.3758/BF03210951 Google Scholar
  69. Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time processing: A review. Journal of Psychophysiology, 18, 89–104. doi: 10.1027/0269-8803.18.23.89 Google Scholar
  70. Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4, 540–545. doi: 10.1016/S1053-8119(00)90990-X PubMedGoogle Scholar
  71. McDermott, J. (2008). The evolution of music. Nature, 453, 287–288. doi: 10.1038/453287a PubMedGoogle Scholar
  72. McGettigan, C., Faulkner, A., Altarelli, I., Obleser, J., Baverstock, H., & Scott, S. K. (2012). Speech comprehension aided by multiple modalities: Behavioural and neural interactions. Neuropsychologia, 50, 762–776. doi: 10.1016/j.neuropsychologia.2012.01.010 PubMedCentralPubMedGoogle Scholar
  73. Müller, R. A., Kleinhans, N., & Courchesne, E. (2001). Broca’s are and the discrimination of frequency transitions: A functional MRI study. Brain and Language, 76, 70–76. doi: 10.1006/brln.2000.2398 PubMedGoogle Scholar
  74. Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3, 207–233. doi: 10.3758/CABN.3.3.207 Google Scholar
  75. Naruse, S., Hashimoto, T., Mori, K., Tsuda, Y., Takahara, M., & Kagami, S. (2013). Developmental changes in facial expression recognition in Japanese school-age children. Journal of Medical Investigation, 60, 114–120.PubMedGoogle Scholar
  76. Nygaard, L. C., & Queen, J. S. (2008). Communicating emotion: Linking affective prosody and word meaning. Journal of Experimental Psychology: Human Perception and Performance, 34, 1017–1030. doi: 10.1037/0096-1523.34.4.1017 PubMedGoogle Scholar
  77. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113. doi: 10.1016/0028-3932(71)90067-4 PubMedGoogle Scholar
  78. Palermo, R., & Coltheart, M. (2004). Photographs of facial expression: Accuracy, response times, and ratings of intensity. Behavior Research Methods, Instruments, & Computers, 36, 634–638. doi: 10.3758/BF03206544 Google Scholar
  79. Pallesen, K. J., Brattico, E., Bailey, C., Korvenoja, A., Koivisto, J., Gjedde, A., & Carlson, S. (2005). Emotion processing of major, minor, and dissonant chords. Annals of the New York Academy of Sciences, 1060, 450–453. doi: 10.1196/annals.1360.047 PubMedGoogle Scholar
  80. Parker, B. (2009). Good vibrations: The physics of music. Baltimore, MD: John Hopkins University Press.Google Scholar
  81. Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674–681. doi: 10.1038/nn1082 PubMedGoogle Scholar
  82. Paulmann, S., Jessen, S., & Kotz, S. A. (2009). Investigating the multimodal nature of human communication: Insights from ERPs. Journal of Psychophysiology, 23, 63–76. doi: 10.1027/0269-8803.23.2.63 Google Scholar
  83. Peretz, I., Gagnon, L., & Bouchard, B. (1998). Music and emotion: Perceptual determinants, immediacy, and isolation after brain damage. Cognition, 68, 111–141. doi: 10.1016/S0010-0277(98)00043-2 PubMedGoogle Scholar
  84. Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114. doi: 10.1146/annurev.psych.56.091103.070225 PubMedGoogle Scholar
  85. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152. doi: 10.1111/1469-8986.3720127 PubMedGoogle Scholar
  86. Pierce, J. (1999). Consonance and scales. In P. R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustics (pp. 167–185). Cambridge, MA: MIT Press.Google Scholar
  87. Ross, E. D., Thompson, R. D., & Yenkosky, J. (1997). Lateralization of affective prosody in brain and the callosal integration of hemispheric language functions. Brain and Language, 56, 27–54. doi: 10.1006/brln.1997.1731 PubMedGoogle Scholar
  88. Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 15, 487–500. doi: 10.1080/0269993004200187 Google Scholar
  89. Schulkind, M. D., Hennis, L. K., & Rubin, D. C. (1999). Music, emotion, and autobiographical memory: They’re playing your song. Memory & Cognition, 27, 948–955. doi: 10.3758/BF03201225 Google Scholar
  90. Schutz, M., & Kubovy, M. (2009). Causality and cross-modal integration. Journal of Experimental Psychology: Human Perception and Performance, 35, 1791–1810. doi: 10.1037/a0016455 PubMedGoogle Scholar
  91. Shepard, R. (1999). Pitch perception and measurement. In P. R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustics (pp. 149–165). Cambridge, MA: MIT Press.Google Scholar
  92. Sollberger, B., Reber, R., & Eckstein, D. (2003). Musical chords as affective priming context in a word-evaluation task. Music Perception, 20, 263–282. doi: 10.1525/mp.2003.20.3.263 Google Scholar
  93. Steinbeis, N., & Koelsch, S. (2010). Affective priming effects of musical sounds on the processing of word meaning. Journal of Cognitive Neuroscience, 23, 604–621. doi: 10.1162/jocn.2009.21383 Google Scholar
  94. Surguladze, S. A., Young, A. W., Senior, C., Brebion, G., Travis, M. J., & Phillips, M. L. (2004). Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology, 18, 212–218. doi: 10.1037/0894-4105.18.2.212 PubMedGoogle Scholar
  95. Thompson, W. F., Schellenberg, E. G., & Husain, G. (2004). Decoding speech prosody: Do music lessons help? Emotion, 4, 46–64. doi: 10.1037/1528-3542.4.1.46 PubMedGoogle Scholar
  96. Trainor, L. (2008). Science & music: The neural roots of music. Nature, 453, 598–599. doi: 10.1038/453598a PubMedGoogle Scholar
  97. Tramo, M. J., Cariani, P. A., Delgutte, B., & Braida, L. D. (2001). Neurobiological foundations for the theory of harmony in Western tonal music. Annals of the New York Academy of Sciences, 930, 92–116. doi: 10.1111/j.1749-6632.2001.tb05727.x PubMedGoogle Scholar
  98. Van Dillen, L. F., & Derks, B. (2012). Working memory load reduces facilitated processing of threatening faces: An ERP study. Emotion, 12, 1340–1349. doi: 10.1037/a0028624 PubMedGoogle Scholar
  99. Ventura, M. I., Baynes, K., Sigvardt, K. A., Unruh, A. M., Acklin, S. S., Kirsch, H. E., & Disbrow, E. A. (2012). Hemispheric asymmetries and prosodic emotion recognition deficits in Parkinson’s disease. Neuropsychologia, 50, 1936–1945. doi: 10.1016/j.neuropsychologia.2012.04.018 PubMedGoogle Scholar
  100. Vroomen, J., Driver, J., & de Gelder, B. (2001). Is cross-modal integration of emotional expressions independent of attentional resources? Cognitive, Affective, & Behavioral Neuroscience, 1, 382–387. doi: 10.3758/CABN.1.4.382 Google Scholar
  101. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531. doi: 10.1016/S1053-8119(03)00078-8 PubMedGoogle Scholar
  102. Yalch, R., & Spangenberg, E. (1990). Effects of store music on shopping behaviour. Journal of Consumer Marketing, 7, 55–63. doi: 10.1108/EUM0000000002502 Google Scholar
  103. Yang, C. L., Perfetti, C. A., & Schmalhofer, F. (2007). Event-related potential indicators of text integration across sentence boundaries. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 55–89. doi: 10.1037/0278-7393.33.1.55 PubMedGoogle Scholar
  104. Zhang, J., Zhou, R., & Oei, T. P. S. (2011). The effects of valence and arousal on hemispheric asymmetry of emotion: Evidence from event-related potentials. Journal of Psychophysiology, 25, 95–103. doi: 10.1027/0269-8803/a000045 Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • David Radford Bakker
    • 1
  • Frances Heritage Martin
    • 1
    • 2
    Email author
  1. 1.School of PsychologyUniversity of TasmaniaHobartAustralia
  2. 2.School of Psychology, Faculty of Science and Information TechnologyUniversity of NewcastleOurimbahAustralia

Personalised recommendations