Mechanisms of motivation–cognition interaction: challenges and opportunities

  • Todd S. BraverEmail author
  • Marie K. Krug
  • Kimberly S. Chiew
  • Wouter Kool
  • J. Andrew Westbrook
  • Nathan J. Clement
  • R. Alison Adcock
  • Deanna M. Barch
  • Matthew M. Botvinick
  • Charles S. Carver
  • Roshan Cools
  • Ruud Custers
  • Anthony Dickinson
  • Carol S. Dweck
  • Ayelet Fishbach
  • Peter M. Gollwitzer
  • Thomas M. Hess
  • Derek M. Isaacowitz
  • Mara Mather
  • Kou Murayama
  • Luiz Pessoa
  • Gregory R. Samanez-Larkin
  • Leah H. Somerville
  • for the MOMCAI group


Recent years have seen a rejuvenation of interest in studies of motivation–cognition interactions arising from many different areas of psychology and neuroscience. The present issue of Cognitive, Affective, & Behavioral Neuroscience provides a sampling of some of the latest research from a number of these different areas. In this introductory article, we provide an overview of the current state of the field, in terms of key research developments and candidate neural mechanisms receiving focused investigation as potential sources of motivation–cognition interaction. However, our primary goal is conceptual: to highlight the distinct perspectives taken by different research areas, in terms of how motivation is defined, the relevant dimensions and dissociations that are emphasized, and the theoretical questions being targeted. Together, these distinctions present both challenges and opportunities for efforts aiming toward a more unified and cross-disciplinary approach. We identify a set of pressing research questions calling for this sort of cross-disciplinary approach, with the explicit goal of encouraging integrative and collaborative investigations directed toward them.


Cognitive control Aging Development Dopamine Reward 


  1. Aarts, H., Custers, R., & Veltkamp, M. (2008). Goal priming and the affective–motivational route to nonconscious goal pursuit. Social Cognition, 26, 555–577.CrossRefGoogle Scholar
  2. Aarts, E., van Holstein, M., & Cools, R. (2011). Striatal dopamine and the interface between motivation and cognition. Frontiers in Psychology, 2, 163.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aarts, E., Wallace, D. L., Dang, L. C., Jagust, W. J., Cools, R., & D’Esposito, M. (2014). Dopamine and the cognitive downside of a promised bonus. Psychological Science, 25, 1003–1009. doi: 10.1177/0956797613517240 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Abelson, R. P. (1968). Theories of cognitive consistency: A sourcebook. Chicago, IL: Rand McNally.Google Scholar
  5. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50, 507–517.CrossRefPubMedGoogle Scholar
  6. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.CrossRefGoogle Scholar
  7. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.CrossRefPubMedGoogle Scholar
  8. Allaire, J. C. (2012). Everyday cognition. In S. K. Whitbourne & M. J. Sliwinski (Eds.), Blackwell handbook of adulthood and aging (pp. 190–207). Hoboken, NJ: Wiley-Blackwell.CrossRefGoogle Scholar
  9. Amiez, C., Joseph, J. P., & Procyk, E. (2006). Reward encoding in the monkey anterior cingulate cortex. Cerebral Cortex, 16, 1040–1055.CrossRefPubMedGoogle Scholar
  10. Andersen, S. L., Dumont, N. L., & Teicher, M. H. (1997). Developmental differences in dopamine synthesis inhibition by (±)-7-OH-DPAT. Naunyn-Schmiedeberg's Archives of Pharmacology, 356, 173–181. doi: 10.1007/PL00005038 CrossRefPubMedGoogle Scholar
  11. Aronson, E. (1968). Dissonance theory: Progress and problems. In R. P. Abelson, E. Aronson, W. J. McGuire, T. M. Newcomb, M. J. Rosenberg, & P. H. Tannenbaum (Eds.), Theories of cognitive consistency: A sourcebook (pp. 5–27). Chicago, IL: Rand McNally.Google Scholar
  12. Austin, J. T., & Vancouver, J. B. (1996). Goal constructs in psychology: Structure, process, and content. Psychological Bulletin, 120, 338–375.CrossRefGoogle Scholar
  13. Backman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience & Biobehavioral Reviews, 30, 791–807.CrossRefGoogle Scholar
  14. Baldo, B. A., & Kelley, A. E. (2007). Discrete neurochemical coding of distinguishable motivational processes: Insights from nucleus accumbens control of feeding. Psychopharmacology, 191, 439–459.CrossRefPubMedGoogle Scholar
  15. Balleine, B. W., & Killcross, S. (2006). Parallel incentive processing: An integrated view of amygdala function. Trends in Neurosciences, 29, 272–279.CrossRefPubMedGoogle Scholar
  16. Baltes, P. B. (1997). On the incomplete architecture of human ontogeny. Selection, optimization, and compensation as foundation of developmental theory. American Psychologist, 52, 366–380.CrossRefPubMedGoogle Scholar
  17. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191–215.CrossRefPubMedGoogle Scholar
  18. Barbas, H., & Pandya, D. N. (1989). Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 286, 353–375.CrossRefPubMedGoogle Scholar
  19. Bargh, J. A., Gollwitzer, P. M., Lee-Chai, A., Barndollar, K., & Trotschel, R. (2001). The automated will: Nonconscious activation and pursuit of behavioral goals. Journal of Personality and Social Psychology, 81, 1014–1027.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bargh, J. A., Gollwitzer, P. M., & Oettingen, G. (2010). Motivation. In S. Fiske, D. Gilbert, & G. Lindzey (Eds.), Handbook of social psychology (5th ed., pp. 268–316). New York, NY: Wiley.Google Scholar
  21. Bargh, J. A., & Morsella, E. (2008). The unconscious mind. Perspectives in Psychological Science, 3, 73–79.CrossRefGoogle Scholar
  22. Bargh, J. A., & Morsella, E. (2010). Unconscious behavioral guidance systems. In C. Agnew, D. Carlston, W. Graziano, & J. Kelly (Eds.), Then a miracle occurs: Focusing on behavior in social psychological theory and research (pp. 89–118). New York, NY: Oxford University Press.Google Scholar
  23. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497–529. doi: 10.1037/0033-2909.117.3.497 CrossRefPubMedGoogle Scholar
  24. Baumeister, R. F., & Showers, C. J. (1986). A review of paradoxical performance effects: Choking under pressure in sports and mental tests. European Journal of Social Psychology, 16, 361–383.CrossRefGoogle Scholar
  25. Baumeister, R. F., & Vohs, K. D. (2007). Self-regulation, ego depletion, and motivation. Social and Personality Psychology Compass, 1, 115–128.CrossRefGoogle Scholar
  26. Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of self-control. Current Directions in Psychological Science, 16, 351–355.CrossRefGoogle Scholar
  27. Beilock, S. (2010). Choke: What the secrets of the brain reveal about getting it right when you have to. New York, NY: Free Press.Google Scholar
  28. Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E., Dolan, R., & Dayan, P. (2013). Dopamine modulates reward-related vigor. Neuropsychopharmacology, 38(8), 1495-1503.Google Scholar
  29. Belin, D., Jonkman, S., Dickinson, A., Robbins, T. W., & Everitt, B. J. (2009). Parallel and interactive learning processes within the basal ganglia: Relevance for the understanding of addiction. Behavioural Brain Research, 199, 89–102.CrossRefPubMedGoogle Scholar
  30. Berridge, K. C. (2003). Pleasures of the brain. Brain and Cognition, 52, 106–128.CrossRefPubMedGoogle Scholar
  31. Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81, 179–209. doi: 10.1016/j.physbeh.2004.02.004 CrossRefGoogle Scholar
  32. Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191, 391–431.CrossRefPubMedGoogle Scholar
  33. Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35, 1124–1143.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.CrossRefPubMedGoogle Scholar
  35. Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “Liking”, “wanting”, and learning. Current Opinion in Pharmacology, 9, 65–73.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33–84.CrossRefPubMedGoogle Scholar
  37. Bijleveld, E., Custers, R., & Aarts, H. (2009). The unconscious eye opener: Pupil dilation reveals strategic recruitment of resources upon presentation of subliminal reward cues. Psychological Science, 20, 1313–1315. doi: 10.1111/j.1467-9280.2009.02443.x CrossRefPubMedGoogle Scholar
  38. Bijleveld, E., Custers, R., & Aarts, H. (2010). Unconscious reward cues increase invested effort, but do not change speed–accuracy tradeoffs. Cognition, 115, 330–335.CrossRefPubMedGoogle Scholar
  39. Bindra, D. (1974). A motivational view of learning, performance, and behavior modification. Psychological Review, 81, 199–213.CrossRefPubMedGoogle Scholar
  40. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78, 246–263.CrossRefPubMedGoogle Scholar
  41. Bonner, S. E., Hastie, R., Sprinkle, G. S., & Young, S. M. (2000). A review of the effects of financial incentives on performance in laboratory tasks: Implications for management accounting. Journal of Management Accounting Research, 12, 19–64.CrossRefGoogle Scholar
  42. Bonner, S. E., & Sprinkle, G. S. (2002). The effects of monetary incentives on effort and task performance: Theories, evidence, and a framework for research. Accounting, Organizations and Society, 27, 303–345.CrossRefGoogle Scholar
  43. Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7, 356–366. doi: 10.3758/CABN.7.4.356 CrossRefGoogle Scholar
  44. Botvinick, M. M. (2012). Hierarchical reinforcement learning and decision making. Current Opinion in Neurobiology, 22, 956–962. doi: 10.1016/j.conb.2012.05.008 CrossRefPubMedGoogle Scholar
  45. Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 9, 16–27.CrossRefGoogle Scholar
  46. Braem, S., King, J. A., Korb, F. M., Krebs, R. M., Notebaert, W., & Egner, T. (2013). Affective modulation of cognitive control is determined by performance-contingency and mediated by ventromedial prefrontal and cingulate cortex. Journal of Neuroscience, 33, 16961–16970.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Braem, S., Verguts, T., Roggeman, C., & Notebaert, W. (2012). Reward modulates adaptations to conflict. Cognition, 125, 324–332.CrossRefPubMedGoogle Scholar
  48. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. doi: 10.1016/j.tics.2011.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Braver, T. S., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. Conway, C. Jarrold, M. Kane, A. Miyake, & J. Towse (Eds.), Variation in working memory (pp. 76–106). Oxford, UK: Oxford University Press.Google Scholar
  50. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII (pp. 713–737). Cambridge, MA: MIT Press.Google Scholar
  51. Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106, 7351–7356.CrossRefGoogle Scholar
  52. Brenhouse, H. C., Sonntag, K. C., & Andersen, S. L. (2008). Transient D1 dopamine receptor expression on prefrontal cortex projection neurons: Relationship to enhanced motivational salience of drug cues in adolescence. Journal of Neuroscience, 28, 2375–2382.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Breton, Y. A., Mullett, A., Conover, K., & Shizgal, P. (2013). Validation and extension of the reward-mountain model. Frontiers in Behavioral Neuroscience, 7, 125.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815–834.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Cacioppo, J. T., Berntson, G. G., Bechara, A., Tranel, D., & Hawkley, L. C. (2011). Could an aging brain contribute to subjective well-being? The value added by a social neuroscience perspective. In A. Todorov, S. T. Fiske, & D. Prentice (Eds.), Social neuroscience: Toward understanding the underpinnings of the social mind (pp. 249–262). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  56. Cacioppo, J. T., Petty, R. E., Feinstein, J. A., & Jarvis, W. B. G. (1996). Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychological Bulletin, 119, 197–253. doi: 10.1037/0033-2909.119.2.197 CrossRefGoogle Scholar
  57. Calabresi, P., Picconi, B., Tozzi, A., & Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences, 30, 211–219.CrossRefPubMedGoogle Scholar
  58. Callan, D. E., & Schweighofer, N. (2008). Positive and negative modulation of word learning by reward anticipation. Human Brain Mapping, 29, 237–249.CrossRefPubMedGoogle Scholar
  59. Camerer, C. F., & Hogarth, R. M. (1999). The effects of financial incentives in experients: A review and capital-labor-production framework. Journal of Risk and Uncertainty, 19, 7–42.CrossRefGoogle Scholar
  60. Capa, R. L., Bustin, G. M., Cleeremans, A., & Hansenne, M. (2011). Conscious and unconscious reward cues can affect a critical component of executive control. Experimental Psychology, 58, 370–375.CrossRefPubMedGoogle Scholar
  61. Carbonell, F., Nagano-Saito, A., Leyton, M., Cisek, P., Benkelfat, C., He, Y., & Dagher, A. (2014). Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks. Neuropharmacology. doi: 10.1016/j.neuropharm.2013.12.021. Advance online publication.PubMedGoogle Scholar
  62. Carstensen, L. L. (2006). The influence of a sense of time on human development. Science, 312, 1913–1915.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously: A theory of socioemotional selectivity. American Psychologist, 54, 165–181.CrossRefPubMedGoogle Scholar
  64. Carstensen, L. L., Turan, B., Scheibe, S., Ram, N., Ersner-Hershfield, H., Samanez-Larkin, G. R., & Nesselroade, J. R. (2011). Emotional experience improves with age: Evidence based on over 10 years of experience sampling. Psychology and Aging, 26, 21–33. doi: 10.1037/a0021285 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Carter, R. M., Macinnes, J. J., Huettel, S. A., & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3, 21. doi: 10.3389/neuro.08.021.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Carver, C. S. (2003). Pleasure as a sign you can attend to something else: Placing positive feelings within a general model of affect. Cognition and Emotion, 17, 241–261.CrossRefGoogle Scholar
  67. Carver, C. S. (in press). Behavioral approach, behavioral avoidance, and behavioral inhibition. In M. Mikulincer, & P. R. Shaver (Eds.), APA handbook of personality and social psychology: Vol. 4. Personality processes and individual differences. Washington, DC: American Psychological Association.Google Scholar
  68. Carver, C. S., & Harmon-Jones, E. (2009). Anger is an approach-related affect: Evidence and implications. Psychological Bulletin, 135, 183–204. doi: 10.1037/a0013965 CrossRefPubMedGoogle Scholar
  69. Carver, C. S., & Scheier, M. F. (1998). On the self-regulation of behavior. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  70. Carver, C. S., & White, T. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333. doi: 10.1037/0022-3514.67.2.319 CrossRefGoogle Scholar
  71. Casey, B. J., Galvan, A., & Hare, T. A. (2005). Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, 15, 239–244.CrossRefPubMedGoogle Scholar
  72. Cauffman, E., Shulman, E. P., Steinberg, L., Claus, E., Banich, M. T., Graham, S., & Woolard, J. (2010). Age differences in affective decision making as indexed by performance on the Iowa Gambling Task. Developmental Psychology, 46, 193–207. doi: 10.1037/a0016128 CrossRefPubMedGoogle Scholar
  73. Charles, S. T. (2010). Strength and vulnerability integration: A model of emotional well-being across adulthood. Psychological Bulletin, 136, 1068–1091.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: Emotional and motivational influences on cognitive control. Frontiers in Psychology, 2, 279.PubMedPubMedCentralGoogle Scholar
  75. Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation–cognitive control interactions revealed by high-resolution pupillometry. Frontiers in Psychology, 4, 15.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Choi, J. M., Padmala, S., Spechler, P., & Pessoa, L. (2013). Pervasive competition between threat and reward in the brain. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nst053. Advance online publication.PubMedCentralGoogle Scholar
  77. Clement, T. S., Feltus, J. R., Kaiser, D. H., & Zentall, T. R. (2000). “Work ethic” in pigeons: Reward value is directly related to the effort or time required to obtain the reward. Psychonomic Bulletin & Review, 7, 100–106.CrossRefGoogle Scholar
  78. Cohen, J. R., Asarnow, R. F., Sabb, F. W., Bilder, R. M., Bookheimer, S. Y., Knowlton, B. J., & Poldrack, R. A. (2010). A unique adolescent response to reward prediction errors. Nature Neuroscience, 13, 669–671. doi: 10.1038/nn.2558 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69, e113–e125.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Cools, R., & Robbins, T. W. (2004). Chemistry of the adaptive mind. Philosophical Transactions of the Royal Society A, 362, 2871–2888. doi: 10.1098/rsta.2004.1468 CrossRefGoogle Scholar
  81. Cooper, J. C., & Knutson, B. (2008). Valence and salience contribute to nucleus accumbens activation. NeuroImage, 39, 538–547.CrossRefPubMedGoogle Scholar
  82. Custers, R., & Aarts, H. (2005). Positive affect as implicit motivator: On the nonconscious operation of behavioral goals. Journal of Personality and Social Psychology, 89, 129–142.CrossRefPubMedGoogle Scholar
  83. Custers, R., & Aarts, H. (2010). The unconscious will: How the pursuit of goals operates outside of conscious awareness. Science, 329, 47–50.CrossRefPubMedGoogle Scholar
  84. Custers, R., Eitam, B., & Bargh, J. A. (2012). Conscious and unconscious processes in goal pursuit. In H. Aarts & A. J. Elliot (Eds.), Goal-directed behavior (pp. 231–266). New York, NY: Psychology Press.Google Scholar
  85. D’Ardenne, K., Lohrenz, T., Bartley, K. A., & Montague, P. R. (2013). Computational heterogeneity in the human mesencephalic dopamine system. Cognitive, Affective, & Behavioral Neuroscience, 13, 747–756. doi: 10.3758/s13415-013-0191-5 CrossRefGoogle Scholar
  86. Daw, N. D., Kakade, S., & Dayan, P. (2002). Opponent interactions between serotonin and dopamine. Neural Networks, 15, 603–616.CrossRefPubMedGoogle Scholar
  87. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711.CrossRefPubMedGoogle Scholar
  88. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Daw, N. D., & Shohamy, D. (2008). The cognitive neuroscience of motivation and learning. Social Cognition, 26, 593–620.CrossRefGoogle Scholar
  90. Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36, 285–298.CrossRefPubMedGoogle Scholar
  91. Dayan, P., Niv, Y., Seymour, B., & Daw, N. D. (2006). The misbehavior of value and the discipline of the will. Neural Networks, 19, 1153–1160.CrossRefPubMedGoogle Scholar
  92. Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–115.CrossRefGoogle Scholar
  93. Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–668. disc. 692–700.CrossRefPubMedGoogle Scholar
  94. Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York, NY: Plenum Press.CrossRefGoogle Scholar
  95. Dickinson, A. (1985). Actions and habits: The development of behavioural autonomy. Philosophical Transactions of the Royal Society B, 308, 67–78.CrossRefGoogle Scholar
  96. Dickinson, A., & Balleine, B. (1994). Motivational control of goal-directed action. Animal Learning & Behavior, 22, 1–18. doi: 10.3758/BF03199951 CrossRefGoogle Scholar
  97. Dickinson, A., & Balleine, B. (1995). Motivational control of instrumental action. Current Directions in Psychological Science, 4, 162–167.CrossRefGoogle Scholar
  98. Dickinson, A., & Balleine, B. W. (2000). Causal cognition and goal-directed action. In C. Heyes & L. Huber (Eds.), The evolution of cognition (pp. 185–204). Cambridge, MA: MIT Press.Google Scholar
  99. Dickinson, A., & Dawson, G. R. (1987). Pavlovian processes in the motivational control of instrumental performance. Quarterly Journal of Experimental Psychology, 39B, 201–213.Google Scholar
  100. Doll, B. B., Simon, D. A., & Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology, 22, 1075–1081.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Dommett, E., Coizet, V., Blaha, C. D., Martindale, J., Lefebvre, V., Walton, N., & Redgrave, P. (2005). How visual stimuli activate dopaminergic neurons at short latency. Science, 307, 1476–1479. doi: 10.1126/science.1107026 CrossRefPubMedGoogle Scholar
  102. Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2003). Novel-object place conditioning in adolescent and adult male and female rats: Effects of social isolation. Physiology and Behavior, 80, 317–325.CrossRefPubMedGoogle Scholar
  103. Dreisbach, G., & Fischer, R. (2012). The role of affect and reward in the conflict-triggered adjustment of cognitive control. Frontiers in Human Neuroscience, 6, 342.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Driscoll, I., Davatzikos, C., An, Y., Wu, X., Shen, D., Kraut, M., & Resnick, S. M. (2009). Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology, 72, 1906–1913. doi: 10.1212/WNL.0b013e3181a82634 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biological Psychiatry, 64, 739–749.CrossRefPubMedGoogle Scholar
  106. Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040–1048.CrossRefGoogle Scholar
  107. Dweck, C. S. (2012). Mindset: How you can fulfil your potential. London, UK: Constable & Robinson Limited.Google Scholar
  108. Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 66, 183–201.CrossRefPubMedGoogle Scholar
  109. Eisenberger, R. (1992). Learned industriousness. Psychological Review, 99, 248–267.CrossRefPubMedGoogle Scholar
  110. Elliot, A. J. (2008). Handbook of approach and avoidance motivation. New York, NY: Psychology Press.Google Scholar
  111. Elliot, A. J., & Fryer, J. W. (2008). The goal construct in psychology. In J. Shah & W. Gardner (Eds.), Handbook of motivation science (pp. 235–250). New York, NY: Guilford Press.Google Scholar
  112. Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: Transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 4.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Ennis, G. E., Hess, T. M., & Smith, B. T. (2013). The impact of age and motivation on cognitive effort: Implications for cognitive engagement in older adulthood. Psychology and Aging, 28, 495–504.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced striatal responses to reward prediction errors in older compared with younger adults. Journal of Neuroscience, 33, 9905–9912.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Estes, W. K. (1943). Discriminative conditioning: I. A discriminative property of conditioned anticipation. Journal of Experimental Psychology, 32, 150–155.CrossRefGoogle Scholar
  116. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7, 336–353. doi: 10.1037/1528-3542.7.2.336 CrossRefPubMedGoogle Scholar
  117. Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press.Google Scholar
  118. Figner, B., Mackinlay, R. J., Wilkening, F., & Weber, E. U. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 709–730.PubMedGoogle Scholar
  119. Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898–1902.CrossRefPubMedGoogle Scholar
  120. Fishbach, A., & Dhar, R. (2005). Goals as excuses or guides: The liberating effect of perceived goal progress on choice. Journal of Consumer Research, 32, 370–377.CrossRefGoogle Scholar
  121. Fishbach, A., Dhar, R., & Zhang, Y. (2006). Subgoals as substitutes or complements: The role of goal accessibility. Journal of Personality and Social Psychology, 91, 232–242.CrossRefPubMedGoogle Scholar
  122. Fishbach, A., Koo, M., & Finkelstein, S. R. (in press). Motivation resulting from completed and missing actions. In J. Olson, & M. P. Zanna (Eds.), Advances in experimental social psychology (Vol. 50). New York, NY: Elsevier.Google Scholar
  123. Frank, M. J., & Kong, L. (2008). Learning to avoid in older age. Psychology and Aging, 23, 392–398.CrossRefPubMedGoogle Scholar
  124. Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition and Emotion, 19, 313–332.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Freund, A. M. (2006). Age-differential motivational consequences of optimization versus compensation focus in younger and older adults. Psychology and Aging, 21, 240–252.CrossRefPubMedGoogle Scholar
  126. Frey, B. S., & Jegen, R. (2001). Motivation crowding theory. Journal of Economic Surveys, 15, 589–611.CrossRefGoogle Scholar
  127. Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19, 476–482.CrossRefPubMedGoogle Scholar
  128. Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G., & Casey, B. J. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26, 6885–6892.CrossRefPubMedGoogle Scholar
  129. Galvan, A., & McGlennen, K. M. (2013). Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults. Journal of Cognitive Neuroscience, 25, 284–296.CrossRefPubMedGoogle Scholar
  130. Gamo, N. J., & Arnsten, A. F. (2011). Molecular modulation of prefrontal cortex: Rational development of treatments for psychiatric disorders. Behavioral Neuroscience, 125, 282–296.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K., & Luna, B. (2010). Immaturities in reward processing and its influence on inhibitory control in adolescence. Cerebral Cortex, 20, 1613–1629.CrossRefPubMedGoogle Scholar
  132. Germain, C. M., & Hess, T. M. (2007). Motivational influences on controlled processing: Moderating distractibility in older adults. Neuropsychology, Development, and Cognition B, 14, 462–486. doi: 10.1080/13825580600611302 CrossRefGoogle Scholar
  133. Gollwitzer, P. M. (1990). Action phases and mind-sets. In E. T. Higgins & R. M. Sorrentino (Eds.), The handbook of motivation and cognition: Foundations of social behavior (Vol. 2, pp. 53–92). New York, NY: Guilford Press.Google Scholar
  134. Gollwitzer, P. M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493–503.CrossRefGoogle Scholar
  135. Gollwitzer, P. M. (2012). Mindset theory of action phases. In P. Van Lange, A. W. Kruglanski, & E. T. Higgins (Eds.), Handbook of theories of social psychology (Vol. 1, pp. 526–545). London, UK: Sage.Google Scholar
  136. Gollwitzer, P. M., Barry, H., & Oettingen, G. (2011). Needs and incentives as sources of goals. In H. Aarts & A. Elliot (Eds.), Goal-directed behavior (pp. 115–149). New York, NY: Psychology Press.Google Scholar
  137. Gollwitzer, P. M., Heckhausen, H., & Ratajczak, H. (1990). From weighing to willing: Approaching a change decision through pre- or postdecisional mentation. Organizational Behavior and Human Decision Processes, 45, 41–65.CrossRefGoogle Scholar
  138. Gollwitzer, P. M., & Moskowitz, G. B. (1996). Goal effects on action and cognition. In E. T. Higgins & A. W. Kruglanski (Eds.), Social psychology: Handbook of basic principles (pp. 361–399). New York, NY: Guilford Press.Google Scholar
  139. Gollwitzer, P. M., & Oettingen, G. (2011). Planning promotes goal striving. In K. D. Vohs & R. F. Baumeister (Eds.), Handbook of self-regulation: Research, theory, and applications (2nd ed., pp. 162–185). New York, NY: Guilford Press.Google Scholar
  140. Gray, J. A. (1987). The psychology of fear and stress. Cambridge, UK: Cambridge University Press.Google Scholar
  141. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophyics. New York, NY: Wiley.Google Scholar
  142. Guitart-Masip, M., Huys, Q. J., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. NeuroImage, 62, 154–166.CrossRefPubMedGoogle Scholar
  143. Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience, 20, 2369–2382.PubMedGoogle Scholar
  144. Harmon-Jones, E. (2003). Anger and the behavioral approach system. Personality and Individual Differences, 35, 995–1005.CrossRefGoogle Scholar
  145. Harmon-Jones, E., Gable, P. A., & Price, T. F. (2013). Does negative affect always narrow and positive affect always broaden the mind? Considering the influence of motivational intensity on cognitive scope. Current Directions in Psychological Science, 22, 301–307.CrossRefGoogle Scholar
  146. Heckhausen, H., & Gollwitzer, P. M. (1987). Thought contents and cognitive functioning in motivational versus volitional states of mind. Motivation and Emotion, 11, 101–120.CrossRefGoogle Scholar
  147. Heckhausen, J., Wrosch, C., & Schulz, R. (2010). A motivational theory of life-span development. Psychological Review, 117, 32–60. doi: 10.1037/a0017668 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Henze, D. A., Gonzalez-Burgos, G. R., Urban, N. N., Lewis, D. A., & Barrionuevo, G. (2000). Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. Journal of Neurophysiology, 84, 2799–2809.PubMedGoogle Scholar
  149. Hermans, E. J., van Marle, H. J., Ossewaarde, L., Henckens, M. J., Qin, S., van Kesteren, M. T., & Fernández, G. (2011). Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science, 334, 1151–1153. doi: 10.1126/science.1209603 CrossRefPubMedGoogle Scholar
  150. Hershberger, W. A. (1986). An approach through the looking glass. Animal Learning & Behavior, 14, 443–451.CrossRefGoogle Scholar
  151. Hess, T. M. (in press). Selective engagement of cognitive resources: Motivational influences on older adults’ cognitive functioning. Perspectives on Psychological Science.Google Scholar
  152. Hess, T. M., & Emery, L. (2012). Memory in context: The impact of age-related goals on performance. In M. Naveh-Benjamin & N. Ohta (Eds.), Perspectives on memory and aging. New York, NY: Psychology Press.Google Scholar
  153. Hess, T. M., Emery, L., & Neupert, S. D. (2012). Longitudinal relationships between resources, motivation, and functioning. Journals of Gerontology, 67B, 299–308. doi: 10.1093/geronb/gbr100 CrossRefGoogle Scholar
  154. Higgins, E. T. (1987). Self-discrepancy: A theory relating self and affect. Psychological Review, 94, 319–340.CrossRefPubMedGoogle Scholar
  155. Higgins, E. T. (1997). Beyond pleasure and pain. American Psychologist, 52, 1280–1300.CrossRefPubMedGoogle Scholar
  156. Holland, P. C. (2004). Relations between Pavlovian–instrumental transfer and reinforcer devaluation. Journal of Experimental Psychology: Animal Behavior Processes, 30, 104–117. doi: 10.1037/0097-7403.30.2.104 PubMedGoogle Scholar
  157. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi: 10.1037/0033-295X.109.4.679 CrossRefPubMedGoogle Scholar
  158. Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16, 122–128. doi: 10.1016/j.tics.2011.12.008 CrossRefPubMedGoogle Scholar
  159. Hommer, D. W., Knutson, B., Fong, G. W., Bennett, S., Adams, C. M., & Varnera, J. L. (2003). Amygdalar recruitment during anticipation of monetary rewards: An event-related fMRI study. Annals of the New York Academy of Sciences, 985, 476–478.CrossRefPubMedGoogle Scholar
  160. Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E., & Graybiel, A. M. (2013). Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature, 500, 575–579.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Hübner, R., & Schlösser, J. (2010). Monetary reward increases attentional effort in the flanker task. Psychonomic Bulletin & Review, 17, 821–826. doi: 10.3758/PBR.17.6.821 CrossRefGoogle Scholar
  162. Hull, C. L. (1943). Principles of behavior, an introduction to behavior theory. New York, NY: Appleton-Century-Crofts.Google Scholar
  163. Inzlicht, M., Schmeichel, B. J., & Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18, 127–133.CrossRefPubMedGoogle Scholar
  164. Isaacowitz, D. M., Toner, K., Goren, D., & Wilson, H. R. (2008). Looking while unhappy: Mood-congruent gaze in young adults, positive gaze in older adults. Psychological Science, 19, 848–853.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Isaacowitz, D. M., Wadlinger, H. A., Goren, D., & Wilson, H. R. (2006). Selective preference in visual fixation away from negative images in old age? An eye-tracking study. Psychology and Aging, 21, 40–48.CrossRefPubMedGoogle Scholar
  166. Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. Journal of Personality and Social Psychology, 52, 1122–1131.CrossRefPubMedGoogle Scholar
  167. Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences, 107, 8871–8876.CrossRefGoogle Scholar
  168. Job, V., Walton, G. M., Bernecker, K., & Dweck, C. S. (2013). Beliefs about willpower determine the impact of glucose on self-control. Proceedings of the National Academy of Sciences, 110, 14837–14842.CrossRefGoogle Scholar
  169. Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20, 963–973. doi: 10.1111/j.1467-9280.2009.02402.x CrossRefPubMedGoogle Scholar
  170. Kennedy, Q., Mather, M., & Carstensen, L. L. (2004). The role of motivation in the age-related positivity effect in autobiographical memory. Psychological Science, 15, 208–214.CrossRefPubMedGoogle Scholar
  171. Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J., & Rushworth, M. F. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9, 940–947.CrossRefPubMedGoogle Scholar
  172. Kinnison, J., Padmala, S., Choi, J. M., & Pessoa, L. (2012). Network analysis reveals increased integration during emotional and motivational processing. Journal of Neuroscience, 32, 8361–8372.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119, 254–284.CrossRefGoogle Scholar
  174. Knight, M., Seymour, T. L., Gaunt, J. T., Baker, C., Nesmith, K., & Mather, M. (2007). Aging and goal-directed emotional attention: Distraction reverses emotional biases. Emotion, 7, 705–714.CrossRefPubMedGoogle Scholar
  175. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. NeuroReport, 12, 3683–3687.CrossRefPubMedGoogle Scholar
  176. Kobayashi, S., Lauwereyns, J., Koizumi, M., Sakagami, M., & Hikosaka, O. (2002). Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. Journal of Neurophysiology, 87, 1488–1498.PubMedGoogle Scholar
  177. Koo, M., & Fishbach, A. (2008). Dynamics of self-regulation: How (un)accomplished goal actions affect motivation. Journal of Personality and Social Psychology, 94, 183–195.CrossRefPubMedGoogle Scholar
  178. Kool, W., & Botvinick, M. (2014). A labor/leisure tradeoff in cognitive control. Journal of Experimental Psychology: General, 143, 131–141. doi: 10.1037/a0031048 CrossRefGoogle Scholar
  179. Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139, 665–682.CrossRefGoogle Scholar
  180. Kool, W., McGuire, J. T., Wang, G. J., & Botvinick, M. M. (2013). Neural and behavioral evidence for an intrinsic cost of self-control. PLoS ONE, 8, e72626. doi: 10.1371/journal.pone.0072626 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and cognitive control in the human prefrontal cortex. Nature Neuroscience, 12, 939–945.CrossRefPubMedGoogle Scholar
  182. Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico–striatal–thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22, 607–615.CrossRefPubMedGoogle Scholar
  183. Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117, 341–347.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Kringelbach, M. L., & Berridge, K. C. (2009). Towards a functional neuroanatomy of pleasure and happiness. Trends in Cognitive Sciences, 13, 479–487.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Kross, E., & Ayduk, O. (2011). Making meaning of negative experiences by self-distancing. Current Directions in Psychological Science, 20, 187–199.CrossRefGoogle Scholar
  186. Krug, M. K., & Braver, T. S. (in press). Motivation and cognitive control: Going beyond monetary incentives. In E. Bijleveld, & H. Aarts (Eds.), The psychological science of money. New York, NY: Springer.Google Scholar
  187. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36, 661–679.CrossRefPubMedGoogle Scholar
  188. Lammel, S., Lim, B. K., & Malenka, R. C. (2014). Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology, 76(Pt B), 351–359. doi: 10.1016/j.neuropharm.2013.03.019 CrossRefPubMedGoogle Scholar
  189. Lammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K. M., & Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491, 212–217. doi: 10.1038/nature11527 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Leon, M. I., & Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24, 415–425.CrossRefPubMedGoogle Scholar
  191. Leotti, L. A., & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22, 1310–1318.CrossRefPubMedPubMedCentralGoogle Scholar
  192. Lepper, M. R., Greene, D., & Nisbett, R. E. (1973). Undermining childrens’ intrinsic interest with extrinsic reward: Test of the “overjustification” hypothesis. Journal of Personality and Social Psychology, 28, 129–137.CrossRefGoogle Scholar
  193. Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory: Role of dopamine-dependent late LTP. Trends in Neurosciences, 34, 536–547. doi: 10.1016/j.tins.2011.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective, & Behavioral Neuroscience, 8, 99–112. doi: 10.3758/CABN.8.1.99 CrossRefGoogle Scholar
  195. Locke, H. S., & Braver, T. S. (2010). Motivational influences on cognitive control: A cognitive neuroscience perspective. In R. R. Hassin, K. N. Ochsner, & Y. Trope (Eds.), Self control in society, mind, and brain (pp. 114–140). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  196. Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647–672.CrossRefPubMedGoogle Scholar
  197. Luciana, M., & Collins, P. F. (2012). Incentive Motivation, Cognitive Control, and the Adolescent Brain: Is It Time for a Paradigm Shift? Child development perspectives, 6(4), 392–399.Google Scholar
  198. MacPherson, S. E., Phillips, L. H., & Della Sala, S. (2002). Age, executive function, and social decision making: A dorsolateral prefrontal theory of cognitive aging. Psychology and Aging, 17, 598–609.CrossRefPubMedGoogle Scholar
  199. Maddox, W. T., & Markman, A. B. (2010). The motivation–cognition interface in learning and decision-making. Current Directions in Psychological Science, 19, 106–110. doi: 10.1177/0963721410364008 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Mather, M. (2012). The emotion paradox in the aging brain. Annals of the New York Academy of Sciences, 1251, 33–49.CrossRefPubMedPubMedCentralGoogle Scholar
  201. Mather, M., Canli, T., English, T., Whitfield, S., Wais, P., Ochsner, K., & Carstensen, L. L. (2004). Amygdala responses to emotionally valenced stimuli in older and younger adults. Psychological Science, 15, 259–263. doi: 10.1111/j.0956-7976.2004.00662.x CrossRefPubMedGoogle Scholar
  202. Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9, 496–502.CrossRefPubMedGoogle Scholar
  203. Mather, M., & Johnson, M. K. (2000). Choice-supportive source monitoring: Do our decisions seem better to us as we age? Psychology and Aging, 15, 596–606.CrossRefPubMedGoogle Scholar
  204. Mather, M., & Knight, M. (2005). Goal-directed memory: The role of cognitive control in older adults’ emotional memory. Psychology and Aging, 20, 554–570.CrossRefPubMedGoogle Scholar
  205. Maunsell, J. H. (2004). Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences, 8, 261–265.CrossRefPubMedGoogle Scholar
  206. McClelland, D. C. (1985a). How motives, skills, and values determine what people do. American Psychologist, 41, 812–825.CrossRefGoogle Scholar
  207. McClelland, D. C. (1985b). Human motivation. Glenville, IL: Scott Foresman.Google Scholar
  208. McClelland, D. C., Atkinson, J. W., Clark, R. A., & Lowell, E. L. (1976). The achievement motive. Oxford, UK: Irvington.Google Scholar
  209. McClure, S. M., Daw, N. D., & Montague, P. R. (2003). A computational substrate for incentive salience. Trends in Neurosciences, 26, 423–428.CrossRefPubMedGoogle Scholar
  210. McClure, S. M., Gilzenrat, M. S., & Cohen, J. D. (2006). An exploration–exploitation model based on norepinepherine and dopamine activity. In Y. Weiss, B. Sholkopf, & J. Platt (Eds.), Advances in neural information processing systems (Vol. 18, pp. 867–874). Cambridge, MA: MIT Press.Google Scholar
  211. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.CrossRefPubMedGoogle Scholar
  212. McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex, cognitive control, and the registration of decision costs. Proceedings of the National Academy of Sciences, 107, 7922–7926.CrossRefGoogle Scholar
  213. Meyniel, F., Sergent, C., Rigoux, L., Daunizeau, J., & Pessiglione, M. (2013). Neurocomputational account of how the human brain decides when to have a break. Proceedings of the National Academy of Sciences, 110, 2641–2646.CrossRefGoogle Scholar
  214. Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.CrossRefPubMedGoogle Scholar
  215. Mischel, W., & Moore, B. (1973). Effects of attention to symbolically presented rewards on self-control. Journal of Personality and Social Psychology, 28, 172–179.CrossRefPubMedGoogle Scholar
  216. Mizuhiki, T., Richmond, B. J., & Shidara, M. (2012). Encoding of reward expectation by monkey anterior insular neurons. Journal of Neurophysiology, 107, 2996–3007.CrossRefPubMedPubMedCentralGoogle Scholar
  217. Mobbs, D., Hassabis, D., Seymour, B., Marchant, J. L., Weiskopf, N., Dolan, R. J., & Frith, C. D. (2009). Choking on the money: Reward-based performance decrements are associated with midbrain activity. Psychological Science, 20, 955–962. doi: 10.1111/j.1467-9280.2009.02399.x CrossRefPubMedPubMedCentralGoogle Scholar
  218. Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: Functional interface between the limbic system and the motor system. Progress in Neurobiology, 14, 69–97.CrossRefPubMedGoogle Scholar
  219. Mohanty, A., Gitelman, D. R., Small, D. M., & Mesulam, M. M. (2008). The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cerebral Cortex, 18, 2604–2613.CrossRefPubMedPubMedCentralGoogle Scholar
  220. Monin, B., & Miller, D. T. (2001). Moral credentials and the expression of prejudice. Journal of Personality and Social Psychology, 81, 33–43.CrossRefPubMedGoogle Scholar
  221. Morecraft, R., & Tanji, J. (2009). Cingulofrontal interactions and cingulate skeletomotor areas. In B. A. Vogt (Ed.), Cingulate neurobiology and disease (pp. 113–144). Oxford, UK: Oxford University Press.Google Scholar
  222. Muraven, M., & Slessareva, E. (2003). Mechanisms of self-control failure: Motivation and limited resources. Personality and Social Psychology Bulletin, 29, 894–906.CrossRefPubMedGoogle Scholar
  223. Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proceedings of the National Academy of Sciences, 107, 20911–20916.CrossRefGoogle Scholar
  224. Murayama, K., Matsumoto, M., Izuma, K., Sugiura, A., Ryan, R. M., Deci, E. L., & Matsumoto, K. (2013). How self-determined choice facilitates performance: A key role of the ventromedial prefrontal cortex. Cerebral Cortex. doi: 10.1093/cercor/bht317. Advance online publication.PubMedGoogle Scholar
  225. Murray, H. A. (1943). Thematic apperception test: Manual. Cambridge, MA: Harvard University Press.Google Scholar
  226. Murty, V. P., & Adcock, R. A. (2013). Enriched encoding: Reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex. doi: 10.1093/cercor/bht063. Advance online publication.PubMedPubMedCentralGoogle Scholar
  227. Murty, V. P., Labar, K. S., & Adcock, R. A. (2012). Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. Journal of Neuroscience, 32, 8969–8976.CrossRefPubMedPubMedCentralGoogle Scholar
  228. Murty, V. P., LaBar, K. S., Hamilton, D. A., & Adcock, R. A. (2011). Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory. Learning and Memory, 18, 712–717.CrossRefPubMedPubMedCentralGoogle Scholar
  229. Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation? Gerontology, 58, 156–163.CrossRefPubMedGoogle Scholar
  230. Nicola, S. M., Surmeier, J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23, 185–215.CrossRefPubMedGoogle Scholar
  231. Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–259.CrossRefGoogle Scholar
  232. Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology, 191, 507–520.CrossRefPubMedGoogle Scholar
  233. Niznikiewicz, M. A., & Delgado, M. R. (2011). Two sides of the same coin: Learning via positive and negative reinforcers in the human striatum. Developmental Cognitive Neuroscience, 1, 494–505. doi: 10.1016/j.dcn.2011.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  234. O’Doherty, J. P., Buchanan, T. W., Seymour, B., & Dolan, R. J. (2006). Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron, 49, 157–166.CrossRefPubMedGoogle Scholar
  235. O’Reilly, R. C. (2006). Biologically based computational models of high-level cognition. Science, 314, 91–94.CrossRefPubMedGoogle Scholar
  236. O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18, 283–328.CrossRefPubMedGoogle Scholar
  237. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242–249.CrossRefPubMedGoogle Scholar
  238. Oettingen, G. (2012). Future thought and behaviour change. European Review of Social Psychology, 23, 1–63.CrossRefGoogle Scholar
  239. Oettingen, G., & Gollwitzer, P. M. (2001). Goal setting and goal striving. In A. Tesser & N. Schwarz (Eds.), Blackwell handbook of social psychology (pp. 329–347). Oxford, UK: Blackwell.Google Scholar
  240. Oettingen, G., & Mayer, D. (2002). The motivating function of thinking about the future: Expectations versus fantasies. Journal of Personality and Social Psychology, 83, 1198–1212.CrossRefPubMedGoogle Scholar
  241. Oettingen, G., Pak, H., & Schnetter, K. (2001). Self-regulation of goal setting: Turning free fantasies about the future into binding goals. Journal of Personality and Social Psychology, 80, 736–753.CrossRefPubMedGoogle Scholar
  242. Oudeyer, P. Y., & Kaplan, F. (2007). What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics, 1, 6.CrossRefPubMedPubMedCentralGoogle Scholar
  243. Padmala, S., & Pessoa, L. (2010). Interactions between cognition and motivation during response inhibition. Neuropsychologia, 48, 558–565. doi: 10.1016/j.neuropsychologia.2009.10.017 CrossRefPubMedGoogle Scholar
  244. Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23, 3419–3432. doi: 10.1162/jocn_a_00011 CrossRefPubMedPubMedCentralGoogle Scholar
  245. Pessiglione, M., Schmidt, L., Draganski, B., Kalisch, R., Lau, H., Dolan, R. J., & Frith, C. D. (2007). How the brain translates money into force: A neuroimaging study of subliminal motivation. Science, 316, 904–906.CrossRefPubMedPubMedCentralGoogle Scholar
  246. Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13, 160–166.CrossRefPubMedPubMedCentralGoogle Scholar
  247. Pessoa, L. (2013). The cognitive–emotional brain: From interactions to integration. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  248. Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4, 17. doi: 10.3389/fnins.2010.00017 CrossRefPubMedPubMedCentralGoogle Scholar
  249. Petrican, R., Moscovitch, M., & Schimmack, U. (2008). Cognitive resources, valence, and memory retrieval of emotional events in older adults. Psychology and Aging, 23, 585–594.CrossRefPubMedGoogle Scholar
  250. Phillips, P. E., Walton, M. E., & Jhou, T. C. (2007). Calculating utility: Preclinical evidence for cost–benefit analysis by mesolimbic dopamine. Psychopharmacology, 191, 483–495.CrossRefPubMedGoogle Scholar
  251. Pleger, B., Ruff, C. C., Blankenburg, F., Klöppel, S., Driver, J., & Dolan, R. J. (2009). Influence of dopaminergically mediated reward on somatosensory decision-making. PLoS Biology, 7, e1000164. doi: 10.1371/journal.pbio.1000164 CrossRefPubMedPubMedCentralGoogle Scholar
  252. Prencipe, A., Kesek, A., Cohen, J., Lamm, C., Lewis, M. D., & Zelazo, P. D. (2011). Development of hot and cool executive function during the transition to adolescence. Journal of Experimental Child Psychology, 108, 621–637.CrossRefPubMedGoogle Scholar
  253. Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51, 501–511.CrossRefPubMedPubMedCentralGoogle Scholar
  254. Redgrave, P., Gurney, K., & Reynolds, J. (2008). What is reinforced by phasic dopamine signals? Brain Research Reviews, 58, 322–339.CrossRefPubMedGoogle Scholar
  255. Reed, A. E., & Carstensen, L. L. (2012). The theory behind the age-related positivity effect. Frontiers in Psychology, 3, 339.CrossRefPubMedPubMedCentralGoogle Scholar
  256. Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information. Psychology and Aging, 29, 1–15.CrossRefPubMedGoogle Scholar
  257. Reeve, J., & Lee, W. (2012). Neuroscience and human motivation. In R. M. Ryan (Ed.), The Oxford handbook of motivation (pp. 365–380). New York, NY: Oxford University Press.Google Scholar
  258. Reynolds, S. M., & Berridge, K. C. (2008). Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nature Neuroscience, 11, 423–425.CrossRefPubMedPubMedCentralGoogle Scholar
  259. Reynolds, J. N. J., & Wickens, J. R. (2002). Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks, 15, 507–521. doi: 10.1016/S0893-6080(02)00045-X CrossRefPubMedGoogle Scholar
  260. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447. doi: 10.1126/science.1100301 CrossRefPubMedGoogle Scholar
  261. Roitman, M. F., Wheeler, R. A., & Carelli, R. M. (2005). Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron, 45, 587–597.CrossRefPubMedGoogle Scholar
  262. Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., & Brammer, M. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27, 973–993. doi: 10.1002/hbm.20237 CrossRefPubMedGoogle Scholar
  263. Rushworth, M. F., & Behrens, T. E. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11, 389–397.CrossRefPubMedGoogle Scholar
  264. Ryan, R. M., Mims, V., & Koestner, R. (1983). Relation of reward contingency and interpersonal context to intrinsic motivation: A review and test using cognitive evaluation theory. Journal of Personality and Social Psychology, 45, 736–750.CrossRefGoogle Scholar
  265. Salamone, J. D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76, 470–485.CrossRefPubMedPubMedCentralGoogle Scholar
  266. Salamone, J. D., Farrar, A. M., Font, L., Patel, V., Schlar, D. E., Nunes, E. J., & Sager, T. N. (2009). Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behavioural Brain Research, 201, 216–222. doi: 10.1016/j.bbr.2009.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  267. Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216–219.CrossRefPubMedGoogle Scholar
  268. Sallet, J., Quilodran, R., Rothé, M., Vezoli, J., Joseph, J.-P., & Procyk, E. (2007). Expectations, gains, and losses in the anterior cingulate cortex. Cognitive, Affective, & Behavioral Neuroscience, 7, 327–336. doi: 10.3758/CABN.7.4.327 CrossRefGoogle Scholar
  269. Samanez-Larkin, G. R., Gibbs, S. E., Khanna, K., Nielsen, L., Carstensen, L. L., & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10, 787–791.CrossRefPubMedPubMedCentralGoogle Scholar
  270. Sarter, M., Gehring, W. J., & Kozak, R. (2006). More attention must be paid: The neurobiology of attentional effort. Brain Research Reviews, 51, 145–160.CrossRefPubMedGoogle Scholar
  271. Schmidt, L., d’Arc, B. F., Lafargue, G., Galanaud, D., Czernecki, V., Grabli, D., … Pessiglione, M. (2008). Disconnecting force from money: Effects of basal ganglia damage on incentive motivation. Brain, 131, 1303–1310. doi:10.1093/brain/awn045Google Scholar
  272. Schmidt, L., Lebreton, M., Cléry-Melin, M. L., Daunizeau, J., & Pessiglione, M. (2012). Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biology, 10, e1001266. doi: 10.1371/journal.pbio.1001266 CrossRefPubMedPubMedCentralGoogle Scholar
  273. Schultheiss, O. C., & Brunstein, J. C. (2010). Implicit motives. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  274. Schultz, W., & Dickinson, A. (2000). Neural coding of prediction errors. Annual Review of Neuroscience, 23, 473–500.CrossRefPubMedGoogle Scholar
  275. Sedikides, C., & Strube, M. J. (1997). Self-evaluation: To thine own self be good, to thine own self be sure, to thine own self be true, and to thine own self be better. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 29, pp. 209–269). New York, NY: Academic Press.Google Scholar
  276. Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12, 154–167.CrossRefPubMedPubMedCentralGoogle Scholar
  277. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240.CrossRefPubMedPubMedCentralGoogle Scholar
  278. Shidara, M., & Richmond, B. J. (2002). Anterior cingulate: Single neuronal signals related to degree of reward expectancy. Science, 296, 1709–1711.CrossRefPubMedGoogle Scholar
  279. Shima, K., & Tanji, J. (1998). Role for cingulate motor area cells in voluntary movement selection based on reward. Science, 282, 1335–1338.CrossRefPubMedGoogle Scholar
  280. Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14, 464–472.CrossRefPubMedGoogle Scholar
  281. Shultz, T. R., & Lepper, M. R. (1998). The consonance model of dissonance reduction. In S. J. Read & L. C. Miller (Eds.), Connectionist and PDP models of social reasoning and social behavior (pp. 211–244). Hillsdale, NJ: Erlbaum.Google Scholar
  282. Singh, S., Lewis, R. L., Barto, A. G., & Sorg, J. (2010). Intrinsically motivated reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental Development, 2, 70–82.CrossRefGoogle Scholar
  283. Small, D. M., Gitelman, D., Simmons, K., Bloise, S. M., Parrish, T., & Mesulam, M. M. (2005). Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cerebral Cortex, 15, 1855–1865.CrossRefPubMedGoogle Scholar
  284. Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236–241.CrossRefPubMedPubMedCentralGoogle Scholar
  285. Somerville, L. H., Hare, T., & Casey, B. J. (2011). Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. Journal of Cognitive Neuroscience, 23, 2123–2134.CrossRefPubMedGoogle Scholar
  286. Sorrentino, R. M. (2013). Looking for B = f (P, E): The exception still forms the rule. Motivation and Emotion, 37, 4–13.CrossRefGoogle Scholar
  287. Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24, 417–463.CrossRefGoogle Scholar
  288. St Onge, J. R., Ahn, S., Phillips, A. G., & Floresco, S. B. (2012). Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making. Journal of Neuroscience, 32, 16880–16891.CrossRefPubMedGoogle Scholar
  289. Steinberg, L. (2004). Risk taking in adolescence: What changes, and why? Annals of the New York Academy of Sciences, 1021, 51–58.CrossRefPubMedGoogle Scholar
  290. Steinberg, L. (2010a). Adolescence (9th ed.). New York, NY: McGraw Hill.Google Scholar
  291. Steinberg, L. (2010b). A dual systems model of adolescent risk-taking. Developmental Psychobiology, 52, 216–224.PubMedGoogle Scholar
  292. Steinberg, L., Albert, D., Cauffman, E., Banich, M., Graham, S., & Woolard, J. (2008). Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: Evidence for a dual systems model. Developmental Psychology, 44, 1764–1778.CrossRefPubMedGoogle Scholar
  293. Steinhauser, M., & Yeung, N. (2010). Decision processes in human performance monitoring. Journal of Neuroscience, 30, 15643–15653.CrossRefPubMedPubMedCentralGoogle Scholar
  294. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.Google Scholar
  295. Tang, S. H., & Hall, V. C. (1995). The overjustification effect: A meta-analysis. Applied Cognitive Psychology, 9, 365–404.CrossRefGoogle Scholar
  296. Taylor, S. F., Welsh, R. C., Wager, T. D., Phan, K. L., Fitzgerald, K. D., & Gehring, W. J. (2004). A functional neuroimaging study of motivation and executive function. NeuroImage, 21(3), 1045–1054.Google Scholar
  297. Thurley, K., Senn, W., & Luscher, H. R. (2008). Dopamine increases the gain of the input–output response of rat prefrontal pyramidal neurons. Journal of Neurophysiology, 99, 2985–2997.CrossRefPubMedGoogle Scholar
  298. Toates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University Press.Google Scholar
  299. Tomaka, J., Blascovich, J., Kibler, J., & Ernst, J. M. (1997). Cognitive and physiological antecedents of threat and challenge appraisal. Journal of Personality and Social Psychology, 73, 63–72.CrossRefPubMedGoogle Scholar
  300. Totah, N. K., Kim, Y., & Moghaddam, B. (2013). Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection. Journal of Neurophysiology, 110, 75–85.CrossRefPubMedPubMedCentralGoogle Scholar
  301. Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352–357.CrossRefGoogle Scholar
  302. van den Bos, W., Cohen, M. X., Kahnt, T., & Crone, E. A. (2012). Striatum–medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. Cerebral Cortex, 22, 1247–1255.CrossRefPubMedGoogle Scholar
  303. Van Leijenhorst, L., Gunther Moor, B., Op de Macks, Z. A., Rombouts, S. A., Westenberg, P. M., & Crone, E. A. (2010). Adolescent risky decision-making: Neurocognitive development of reward and control regions. NeuroImage, 51, 345–355.CrossRefPubMedGoogle Scholar
  304. van Steenbergen, H., Band, G. P., & Hommel, B. (2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90, 234–241.CrossRefPubMedGoogle Scholar
  305. Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., & Fjell, A. M. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 32, 916–932. doi: 10.1016/j.neurobiolaging.2009.05.013 CrossRefPubMedGoogle Scholar
  306. Walters, J. R., Ruskin, D. N., Allers, K. A., & Bergstrom, D. A. (2000). Pre- and postsynaptic aspects of dopamine-mediated transmission. Trends in Neurosciences, 23(10, Suppl), S41–S47.CrossRefPubMedGoogle Scholar
  307. Walton, G. M., & Cohen, G. L. (2007). A question of belonging: Race, social fit, and achievement. Journal of Personality and Social Psychology, 92, 82–96.CrossRefPubMedGoogle Scholar
  308. Watanabe, M. (1996). Reward expectancy in primate prefrontal neurons. Nature, 382, 629–632.CrossRefPubMedGoogle Scholar
  309. Watanabe, M., Hikosaka, K., Sakagami, M., & Shirakawa, S. (2002). Coding and monitoring of motivational context in the primate prefrontal cortex. Journal of Neuroscience, 22, 2391–2400.PubMedGoogle Scholar
  310. Webb, T. L., & Sheeran, P. (2006). Does changing behavioral intentions engender behavior change? A meta-analysis of the experimental evidence. Psychological Bulletin, 132, 249–268. doi: 10.1037/0033-2909.132.2.249 CrossRefPubMedGoogle Scholar
  311. Weiner, B. (1992). Human motivation: Metaphors, theories, and research. Newbury Park, CA: Sage.Google Scholar
  312. Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS ONE, 8, e68210. doi: 10.1371/journal.pone.0068210 CrossRefPubMedPubMedCentralGoogle Scholar
  313. Wiersma, U. J. (1992). The effects of extrinsic rewards in instrinsic motivation: A meta-analysis. Journal of Occupational and Organizational Psychology, 65, 101–114.CrossRefGoogle Scholar
  314. Wise, R. A., & Rompre, P. P. (1989). Brain dopamine and reward. Annual Review of Psychology, 40, 191–225.CrossRefPubMedGoogle Scholar
  315. Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Duzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45, 459–467.CrossRefPubMedGoogle Scholar
  316. Woodward, A. L. (1998). Infants selectively encode the goal object of an actor’s reach. Cognition, 69, 1–34.CrossRefPubMedGoogle Scholar
  317. Worthy, D. A., Markman, A. B., & Maddox, W. T. (2009). What is pressure? Evidence for social pressure as a type of regulatory focus. Psychonomic Bulletin & Review, 16, 344–349. doi: 10.3758/PBR.16.2.344 CrossRefGoogle Scholar
  318. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459–482.CrossRefGoogle Scholar
  319. Zedelius, C. M., Veling, H., & Aarts, H. (2012). When unconscious rewards boost cognitive task performance inefficiently: The role of consciousness in integrating value and attainability information. Frontiers in Human Neuroscience, 6, 219. doi: 10.3389/fnhum.2012.00219 CrossRefPubMedPubMedCentralGoogle Scholar
  320. Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S., & Aldridge, J. W. (2009). A neural computational model of incentive salience. PLoS Computational Biology, 5, e1000437.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Todd S. Braver
    • 1
    Email author
  • Marie K. Krug
    • 1
  • Kimberly S. Chiew
    • 2
  • Wouter Kool
    • 3
  • J. Andrew Westbrook
    • 1
  • Nathan J. Clement
    • 2
  • R. Alison Adcock
    • 2
  • Deanna M. Barch
    • 1
  • Matthew M. Botvinick
    • 3
  • Charles S. Carver
    • 4
  • Roshan Cools
    • 5
  • Ruud Custers
    • 6
  • Anthony Dickinson
    • 7
  • Carol S. Dweck
    • 8
  • Ayelet Fishbach
    • 9
  • Peter M. Gollwitzer
    • 10
  • Thomas M. Hess
    • 11
  • Derek M. Isaacowitz
    • 12
  • Mara Mather
    • 13
  • Kou Murayama
    • 14
  • Luiz Pessoa
    • 15
  • Gregory R. Samanez-Larkin
    • 16
  • Leah H. Somerville
    • 17
  • for the MOMCAI group
  1. 1.Department of PsychologyWashington University in St. LouisSt. LouisUSA
  2. 2.Center for Cognitive NeuroscienceDuke UniversityDurhamUSA
  3. 3.Department of PsychologyPrinceton UniversityPrincetonUSA
  4. 4.Department of PsychologyUniversity of MiamiMiamiUSA
  5. 5.Radboud University Nijmegen Medical CenterNijmegenThe Netherlands
  6. 6.Cognitive, Perceptual, and Brain SciencesUniversity College LondonLondonUK
  7. 7.Experimental PsychologyUniversity of CambridgeCambridgeUK
  8. 8.Department of PsychologyStanford UniversityStanfordUSA
  9. 9.Booth School of BusinessUniversity of ChicagoChicagoUSA
  10. 10.Department of PsychologyNew York UniversityNew YorkUSA
  11. 11.Department of PsychologyNorth Carolina State UniversityRaleighUSA
  12. 12.Department of PsychologyNortheastern UniversityBostonUSA
  13. 13.University of Southern CaliforniaLos AngelesUSA
  14. 14.Department of PsychologyUniversity of ReadingReadingUK
  15. 15.Department of PsychologyUniversity of MarylandCollege ParkUSA
  16. 16.Department of PsychologyYale UniversityNew HavenUSA
  17. 17.Department of PsychologyHarvard UniversityCambridgeUSA

Personalised recommendations