Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 14, Issue 4, pp 1300–1309 | Cite as

Automatic motor activation by mere instruction

  • Tom EveraertEmail author
  • Marijke Theeuwes
  • Baptist Liefooghe
  • Jan De Houwer
Article

Abstract

Previous behavioral studies have shown that instructions about stimulus–response (S-R) mappings can influence task performance even when these instructions are irrelevant for the current task. In the present study, we tested whether automatic effects of S–R instructions occur because the instructed stimuli automatically activate their corresponding responses. We registered the lateralized readiness potentials (LRPs) that were evoked by the instructed stimuli while participants were performing a task for which those mappings were irrelevant. Instructed S–R mappings clearly affected task performance in electrophysiological and behavioral measures. The LRP was found to deflect in the direction of the response tendency that corresponded with the instructed S–R mapping. Early activation of the instructed response was observed but occurred predominantly on slow trials. In contrast, response conflict evoked by instructed S–R mappings did not modulate the N2 amplitude. The results strongly suggest that, like experienced S–R mappings, instructed S–R mappings can lead to automatic response activation, but possibly via a different route.

Keywords

Learning Instruction Erp Cognitive control Working memory 

Notes

Acknowledgments

Preparation of this article was supported by Grant BOF/GOA2006/001 and Grant BOF09/01 M00209 from Ghent University. We would like to thank Helen Tibboel for her valuable assistance in collecting data during this study.

References

  1. Arezzo, J., & Vaughan, H. G. (1975). Cortical potentials associated with voluntary movements in monkey. Brain Research, 88, 99–104.PubMedCrossRefGoogle Scholar
  2. Bartholow, B. D., Pearson, M. A., Dickter, C. L., Sher, K. J., Fabiani, M., & Gratton, G. (2005). Strategic control and medial frontal negativity: Beyond errors and response conflict. Psychophysiology, 42, 33–42.PubMedCrossRefGoogle Scholar
  3. Brass, M., Wenke, D., Spengler, S., & Waszak, F. (2009). Neural correlates of overcoming interference from instructed and implemented stimulus–response associations. Journal of Neuroscience, 29, 1766–1772.PubMedCrossRefGoogle Scholar
  4. Cohen-Kdoshay, O., & Meiran, N. (2007). The representation of instructions in working memory leads to autonomous response activation: Evidence from the first trials in the flanker paradigm. Quarterly Journal of Experimental Psychology, 60, 1140–1154.Google Scholar
  5. Cohen-Kdoshay, O., & Meiran, N. (2009). The representation of instructions operates like a prepared reflex: Flanker compatibility effects that are found in the first trial following S-R instructions. Experimental Psychology, 56, 128–133.PubMedCrossRefGoogle Scholar
  6. Coles, M. G. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology, 26, 251–269.PubMedCrossRefGoogle Scholar
  7. Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception and Performance, 11, 529–553.PubMedGoogle Scholar
  8. De Houwer, J., Beckers, T., Vandorpe, S., & Custers, R. (2005). Further evidence for the role of mode-independent short-term associations in spatial Simon effects. Perception & Psychophysics, 67, 659–666.CrossRefGoogle Scholar
  9. De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750.PubMedGoogle Scholar
  10. Duyck, W., Desmet, T., Verbeke, L., & Brysbaert, M. (2004). WordGen: A tool for word selection and non-word generation in Dutch, German, English, and French. Behavior Research Methods, Instruments, & Computers, 36, 488–499.CrossRefGoogle Scholar
  11. Eder, A. B., Leuthold, H., Rothermund, K., & Schweinberger, S. R. (2012). Automatic response activation in sequential affective priming: An ERP study. Social Cognitive and Affective Neuroscience, 7, 436–445.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Eimer, M. (1995). Stimulus–response compatibility and automatic response activation: Evidence from psychophysiological studies. Journal of Experimental Psychology: Human Perception & Performance, 21, 837–854.Google Scholar
  13. Eimer, M. (1998). The lateralized readiness potential as an on-line measure of central response activation processes. Behavior Research Methods, Instruments, & Computers, 30, 146–156.CrossRefGoogle Scholar
  14. Eriksen, B. A., & Eriksen, C.W. (1974). Effects of noise letters upon identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143–149.Google Scholar
  15. Falkenstein, M., Hohnsbein, J., & Hoormann, J. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction time tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455.PubMedCrossRefGoogle Scholar
  16. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.PubMedCrossRefGoogle Scholar
  17. Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.CrossRefGoogle Scholar
  19. Gemba, H., & Sasaki, K. (1990). Potential related to no-go reaction in go no-go hand movement with discrimination between tone stimuli of different frequencies in the monkey. Brain Research, 537, 340–344.PubMedCrossRefGoogle Scholar
  20. Gevers, W., Rattinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture - Evidence from the lateralized readiness potential. Experimental Psychology, 53, 58–68.PubMedCrossRefGoogle Scholar
  21. Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484.PubMedCrossRefGoogle Scholar
  22. Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506.CrossRefGoogle Scholar
  23. Gratton, G., Coles, M. G. H., Sirevaag, E., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331–344.PubMedGoogle Scholar
  24. Hartstra, E., Kühn, S., Verguts, T., & Brass, M. (2011). The implementation of verbal instructions: An fMRI study. Human Brain Mapping, 32, 1811–1824.PubMedCrossRefGoogle Scholar
  25. Hartstra, E., Waszak, F., & Brass, M. (2012). The implementation of verbal instructions: Dissociating motor preparation from the formation of stimulus–response associations. NeuroImage, 63, 1143–1153.PubMedCrossRefGoogle Scholar
  26. Hazeltine, E., Poldrack, R., & Gabrieli, J. D. E. (2000). Neural activation during response competition. Journal of Cognitive Neuroscience, 12, 118–129.PubMedCrossRefGoogle Scholar
  27. Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849.PubMedCrossRefGoogle Scholar
  28. Huang, T., Hazy, T. E., Herd, S. A., & O’Reilly, R. (2013). Assembling old tricks for new tasks: A neural model of instructional learning and control. Journal of Cognitive Neuroscience, 25, 843–851.PubMedCrossRefGoogle Scholar
  29. Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24, 48–56.PubMedCrossRefGoogle Scholar
  30. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap – Cognitive basis for stimulus–response compatibility – A model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRefGoogle Scholar
  31. Leuthold, H., Sommer, W., & Ulrich, R. (1996). Partial advance information and response preparation: Inferences from the lateralized readiness potential. Journal of Experimental Psychology: General, 125, 307–323.CrossRefGoogle Scholar
  32. Liefooghe, B., De Houwer, J., & Wenke, D. (2013). Instruction-based response activation depends on task preparation. Psychonomic Bulletin & Review, 20, 481–487.CrossRefGoogle Scholar
  33. Liefooghe, B., Wenke, D., & De Houwer, J. (2012). Instruction-based task-rule congruency effects. Journal of Experimental Psychology: Learning, Memory, & Cognition, 38, 1325–1335.Google Scholar
  34. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.CrossRefGoogle Scholar
  35. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
  36. Mansfield, K. L., van der Molen, M. W., Falkenstein, M., & van Boxtel, G. J. M. (2013). Temporal dynamics of interference in Simon and Eriksen tasks considered within the context of a dual-process model. Brain and Cognition, 82, 353–363.PubMedCrossRefGoogle Scholar
  37. Masaki, H., Wild-Wall, N., Sangals, J., & Sommer, W. (2004). The functional locus of the lateralized readiness potential. Psychophysiology, 41, 220–230.PubMedCrossRefGoogle Scholar
  38. Meiran, N., & Cohen-Kdoshay, O. (2012). Working memory load but not multitasking eliminates the prepared reflex: Further evidence from the adapted flanker paradigm. Acta Psychologica, 139, 309–313.PubMedCrossRefGoogle Scholar
  39. Meiran, N., Cole, M. W., & Braver, T. S. (2012). When planning results in loss of control: Intention-based reflexivity and working-memory. Frontiers in Human Neuroscience, 6, 104.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Meiran, N., & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157.PubMedGoogle Scholar
  41. Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35, 99–115.PubMedCrossRefGoogle Scholar
  42. Mordkoff, T. J., & Gianaros, P. J. (2000). Detecting the onset of the lateralized readiness potential: A comparison of available methods and procedures. Psychophysiology, 37, 347–360.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Muggeo, V. M. R. (2008). Segmented: An R package to fit regression models with broken-line relationships. R News, 8, 20–25.Google Scholar
  44. Okada, Y. C., Williamson, S. J., & Kaufman, L. (1982). Magnetic-field of the human sensorimotor cortex. International Journal of Neuroscience, 17, 33–38.PubMedCrossRefGoogle Scholar
  45. Poli, R., Cinel, C., Citi, L., & Sepulveda, F. (2010). Reaction-time binning: A simple method for increasing the resolving power of ERP averages. Psychophysiology, 47, 467–485.PubMedCrossRefGoogle Scholar
  46. Praamstra, P., Stegeman, D. F., Horstink, M. W. I. M., & Cools, A. R. (1996). Dipole source analysis suggests selective modulation of the supplementary motor area contribution to the readiness potential. Electroencephalography and Clinical Neurophysiology, 98, 468–477.PubMedCrossRefGoogle Scholar
  47. Ramamoorthy, A., & Verguts, T. (2012). Word and deed: A computational model of instruction following. Brain Research, 1439, 54–65.PubMedCrossRefGoogle Scholar
  48. Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.PubMedCrossRefGoogle Scholar
  49. Requin, J. (1985). Looking forward to move soon: Ante factum selective processes in motor control. In M. I. Posner & O. S. M. Marin (Eds.), Attention and performance X (pp. 147–167). Hillsdale, NJ: Erlbaum.Google Scholar
  50. Ruge, H., & Wolfensteller, U. (2010). Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cerebral Cortex, 20, 1656–1667.PubMedCrossRefGoogle Scholar
  51. Schwarzenau, P., Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1998). A new method for the estimation of the onset of the lateralized readiness potential (LRP). Behavior Research Methods, Instruments, & Computers, 30, 110–117.CrossRefGoogle Scholar
  52. Smulders, F. T. Y., & Miller, J. O. (2012). The lateralized readiness potential. In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of event-related potential components. New York: Oxford University Press.Google Scholar
  53. Smulders, F. T. (2010). Simplifying jackknifing of ERPs and getting more out of it: Retrieving estimates of participants’ latencies. Psychophysiology, 47, 387–392.PubMedCrossRefGoogle Scholar
  54. Stevens, M., Lammertyn, J., Verbruggen, F., & Vandierendonck, A. (2006). Tscope: A C library for programming cognitive experiments on the MS Windows platform. Behavior Research Methods, 38, 280–286.PubMedCrossRefGoogle Scholar
  55. Stürmer, B., Ouyang, G., Zhou, C., Boldt, A., & Sommer, W. (2013). Separating stimulus-driven and response-related LRP components with Residue Iteration Decomposition (RIDE). Psychophysiology, 50, 70–73.PubMedCrossRefGoogle Scholar
  56. Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816–827.PubMedCrossRefGoogle Scholar
  57. Umebayashi, K., & Okita, T. (2010). An ERP investigation of task switching using a flanker paradigm. Brain Research, 1346, 165–173.PubMedCrossRefGoogle Scholar
  58. Van Veen, V., & Carter, C. S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14, 593–602.PubMedCrossRefGoogle Scholar
  59. Wenke, D., Gaschler, R., & Nattkemper, D. (2007). Instructions induced feature binding. Psychological Research, 71, 92–106.PubMedCrossRefGoogle Scholar
  60. Wenke, D., Gaschler, R., Nattkemper, D., & Frensch, P. A. (2009). Strategic influences on implementing instructions for future actions. Psychological Research, 73, 587–601.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Wild-Wall, N., Sangals, J., Sommer, W., & Leuthold, H. (2003). Are fingers special? Evidence about movement preparation from event-related brain potentials. Psychophysiology, 40, 7–16.PubMedCrossRefGoogle Scholar
  62. Yamaguchi, M., & Proctor, R. W. (2012). Multidimensional vector model of stimulus–response compatibility. Psychological Review, 119, 272–303.PubMedCrossRefGoogle Scholar
  63. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Tom Everaert
    • 1
    Email author
  • Marijke Theeuwes
    • 1
  • Baptist Liefooghe
    • 1
  • Jan De Houwer
    • 1
  1. 1.Department of PsychologyGhent UniversityGhentBelgium

Personalised recommendations