Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict

  • Berry van den Berg
  • Ruth M. Krebs
  • Monicque M. Lorist
  • Marty G. Woldorff


The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.


Attention Motivation Event-related potentials Contingent negative variation (CNV) Oscillatory Alpha 


Author Note

This work was supported by grants from the National Institute of Mental Health (R01-MH060415) and the National Institute of Neurological Disorders and Stroke (R01-NS051048) to M.G.W.


  1. Aarts, E., van Holstein, M., & Cools, R. (2011). Striatal Dopamine and the Interface between Motivation and Cognition. Frontiers in Psychology, 2, 163.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3).Google Scholar
  3. Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379–84.CrossRefPubMedGoogle Scholar
  4. Bazanova, O. M., & Vernon, D. (2013). Interpreting EEG Alpha activity. Neuroscience and Biobehavioral Reviews.Google Scholar
  5. Bendiksby, M. S., & Platt, M. L. (2006). Neural correlates of reward and attention in macaque area LIP. Neuropsychologia, 44(12), 2411–20.CrossRefPubMedGoogle Scholar
  6. Bijleveld, E., Custers, R., & Aarts, H. (2010). Unconscious reward cues increase invested effort, but do not change speed-accuracy tradeoffs. Cognition, 115(2), 330–5.CrossRefPubMedGoogle Scholar
  7. Buschman, T., & Miller, E. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862.CrossRefPubMedGoogle Scholar
  8. Camara, E., Rodriguez-Fornells, A., & Münte, T. F. (2008). Functional connectivity of reward processing in the brain. Frontiers in Human Neuroscience, 2, 19.CrossRefPubMedGoogle Scholar
  9. Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58–72.CrossRefPubMedGoogle Scholar
  10. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.CrossRefPubMedGoogle Scholar
  11. Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627–68. discussion 692–700.CrossRefPubMedGoogle Scholar
  12. Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.CrossRefPubMedGoogle Scholar
  13. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMedGoogle Scholar
  14. Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion, 7(3), 668–74.CrossRefPubMedGoogle Scholar
  15. Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 1–4.CrossRefGoogle Scholar
  16. Folstein, J., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152–170.PubMedGoogle Scholar
  17. Foxe, J. J., & Snyder, A. C. (2011). The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Frontiers in Psychology, 2, 154.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Geerligs, L., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2012). Compensation through increased functional connectivity: Neural correlates of inhibition in old and young. Journal of Cognitive Neuroscience, 24(10), 2057–69.CrossRefPubMedGoogle Scholar
  19. Goldstein, R. Z., Cottone, L. A., Jia, Z., Maloney, T., Volkow, N. D., & Squires, N. K. (2006). The effect of graded monetary reward on cognitive event-related potentials and behavior in young healthy adults. International Journal of Psychophysiology. Official Journal of the International Organization of Psychophysiology, 62(2), 272–9.CrossRefGoogle Scholar
  20. Grent-’t-Jong, T., & Woldorff, M. G. (2007). Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biology, 5(1), e12.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grent-’t-Jong, T., Boehler, C. N., Kenemans, J. L., & Woldorff, M. G. (2011). Differential functional roles of slow-wave and oscillatory-α activity in visual sensory cortex during anticipatory visual-spatial attention. Cerebral Cortex, 21(10), 2204–16.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haagh, S., & Brunia, C. (1985). Anticipatory response-relevant muscle activity. CNV amplitude and simple reaction time. Electroencephalography and Clinical Neurophysiology, 30–39.Google Scholar
  23. Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(1), 4–26.CrossRefGoogle Scholar
  24. Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K.-H. (2007). Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage, 37(4), 1465–73.CrossRefPubMedGoogle Scholar
  25. Hanslmayr, S., Pastotter, B., Bauml, K.-H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20(2), 215–25.CrossRefPubMedGoogle Scholar
  26. Hickey, C., & van Zoest, W. (2012). Reward creates oculomotor salience. Current Biology, 22(7), 219–20.CrossRefGoogle Scholar
  27. Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(33), 11096–103.CrossRefGoogle Scholar
  28. Hillyard, S. (1969). Relationships between the contingent negative variation (CNV) and reaction time. Physiology & Behavior, 4, 351–357.CrossRefGoogle Scholar
  29. Hillyard, S., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95, 781–787.CrossRefGoogle Scholar
  30. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG Alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1).Google Scholar
  31. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(16), RC159.Google Scholar
  32. Krawczyk, D. C., Gazzaley, A., & D’Esposito, M. (2007). Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Research, 1141, 168–77.CrossRefPubMedGoogle Scholar
  33. Krebs, R. M., Schott, B. H., Schütze, H., & Düzel, E. (2009). The novelty exploration bonus and its attentional modulation. Neuropsychologia, 47(11), 2272–81.CrossRefPubMedGoogle Scholar
  34. Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117(3), 341–347.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(26), 9752–9.CrossRefGoogle Scholar
  36. Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The Involvement of the Dopaminergic Midbrain and Cortico-Striatal-Thalamic Circuits in the Integration of Reward Prospect and Attentional Task Demands. Cerebral Cortex, 22(3), 607–615.CrossRefPubMedGoogle Scholar
  37. Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8(1).Google Scholar
  38. Kristjánsson, Á., Sigurjónsdóttir, Ó., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, & Psychophysics, 72(5), 1229–1236.CrossRefGoogle Scholar
  39. Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701–11.CrossRefPubMedGoogle Scholar
  40. Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective, & Behavioral Neuroscience, 8(1), 99–112.CrossRefGoogle Scholar
  41. Luck, S. J., & Ford, M. A. (1998). On the role of selective attention in visual perception. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 825–30.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Luck, S. J., & Kappenman, E. S. (Eds.). (2011). The Oxford Handbook of Event-Related Potential Components. Oxford University Press.Google Scholar
  43. Luck., S.J. (2005) An Introduction to the Event-Related Potential Technique (Cognitive Neuroscience). A Bradford Book, 1 edition.Google Scholar
  44. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Pychological Bulletin, 109(2), 163–203.CrossRefGoogle Scholar
  45. Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of experimental psychology. Human Perception and Performance, 17(4), 1057–74.CrossRefPubMedGoogle Scholar
  46. Marini, F., Marzi, T., & Viggiano, M. P. (2011). "Wanted!" the effects of reward on face recognition: Electrophysiological correlates. Cognitive, Affective, & Behavioral Neuroscience, 11(4), 627–3.CrossRefGoogle Scholar
  47. MATLAB (2013), The MathWorks, Inc., Natick, Massachusetts, United States.Google Scholar
  48. Maunsell, J. H. R. (2004). Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences, 8(6), 261–5.CrossRefPubMedGoogle Scholar
  49. Nagai, Y., Critchley, H. D., Featherstone, E., Fenwick, P. B. C., Trimble, M. R., & Dolan, R. J. (2004). Brain activity relating to the contingent negative variation: An fMRI investigation. NeuroImage, 21(4), 1232–41.CrossRefPubMedGoogle Scholar
  50. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1568–69.CrossRefGoogle Scholar
  51. Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 3419–32.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pashler, H. E. (1998). The psychology of attention. Book (Vol. 41).Google Scholar
  53. Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4, 2–8.CrossRefGoogle Scholar
  54. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.CrossRefPubMedPubMedCentralGoogle Scholar
  55. R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  56. Schevernels, H., Krebs, R. M., Santens, P., Woldorff, M. G., & Boehler, C. N. (2014). Task preparation processes related to reward prediction precede those related to task-difficulty expectation. NeuroImage, 84, 639–47.CrossRefPubMedGoogle Scholar
  57. Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207.CrossRefPubMedGoogle Scholar
  58. Schupp, H. T., Flaisch, T., Stockburger, J., & Junghöfer, M. (2006). Emotion and attention: Event-related brain potential studies. Progress in Brain Research, 156, 31–51.CrossRefPubMedGoogle Scholar
  59. Stroop, J. R. (1934). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662.CrossRefGoogle Scholar
  60. Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. A. L. (1964). Contingent negative variation: An electrical sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380–384.CrossRefPubMedGoogle Scholar
  61. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–8.CrossRefPubMedGoogle Scholar
  62. Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H.-J., & Düzel, E. (2005). Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–67.CrossRefPubMedGoogle Scholar
  63. Woldorff, M. G., Hazlett, C. J., Fichtenholtz, H. M., Weissman, D. H., Dale, A. M., & Song, A. W. (2004). Functional parcellation of attentional control regions of the brain. Journal of Cognitive Neuroscience, 16(1), 149–65.CrossRefPubMedGoogle Scholar
  64. Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(6), RC63.Google Scholar
  65. Wu, Y., & Zhou, X. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114–22.CrossRefPubMedGoogle Scholar
  66. Wu, C. C., Samanez-Larkin, G. R., Katovich, K., & Knutson, B. (2014). Affective traits link to reliable neural markers of incentive anticipation. NeuroImage, 84, 279–89.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Berry van den Berg
    • 1
    • 3
  • Ruth M. Krebs
    • 2
  • Monicque M. Lorist
    • 3
    • 4
  • Marty G. Woldorff
    • 1
    • 5
    • 6
  1. 1.Center for Cognitive NeuroscienceDuke UniversityDurhamUSA
  2. 2.Department of Experimental PsychologyGhent UniversityGhentBelgium
  3. 3.BCN Neuroimaging CenterUniversity of GroningenGroningenThe Netherlands
  4. 4.Department of Experimental PsychologyUniversity of GroningenGroningenThe Netherlands
  5. 5.Department of PsychiatryDuke UniversityDurhamUSA
  6. 6.Department of Psychology & NeuroscienceDuke UniversityDurhamUSA

Personalised recommendations