Cognitive, Affective, & Behavioral Neuroscience

, Volume 14, Issue 3, pp 1132–1141 | Cite as

Poorer aerobic fitness relates to reduced integrity of multiple memory systems

  • Matthew B. PontifexEmail author
  • Andrew C. Parks
  • Patrick C. O’Neil
  • Adriel R. Egner
  • Joseph T. Warning
  • Karin A. Pfeiffer
  • Kimberly M. Fenn


Epidemiological investigations have revealed increases in the prevalence of sedentary behaviors in industrialized societies. However, the implications of those lifestyle choices and related cardiorespiratory fitness levels for memory function are not well-understood. To determine the extent to which cardiorespiratory fitness relates to the integrity of multiple memory systems, a cross-sectional sample of young adults were tested over the course of 3 days in areas related to implicit memory, working memory, long-term memory, and aerobic fitness. Findings revealed an association between aerobic fitness and memory function such that individuals with lower cardiorespiratory fitness exhibited poorer implicit memory performance and poorer long-term memory retention. These data indicate that cardiorespiratory fitness may be important for the optimal function of neural networks underlying these memory systems.


Basal ganglia Cognitive control Neural network Working memory Longterm memory Implicit memory 


Author Disclosure Statement

No conflicting financial interests exist.


  1. American College of Sports Medicine. (2006). ACSM’s guidelines for exercise testing and prescription (7th ed.). New York: Lippincott Williams & Wilkins.Google Scholar
  2. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62. doi: 10.1006/nimg.1996.0247 PubMedCrossRefGoogle Scholar
  3. Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14, 147–153. doi: 10.1038/nn.2732 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., … Kramer, A. F. (2010a). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172-183. doi: 10.1016/j.brainres.2010.08.049
  5. Chaddock, L., Erickson, K. I., Prakash, R. S., VanPatter, M., Voss, M. W., Pontifex, M. B., … Kramer, A. F. (2010b). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32, 249-256. doi: 10.1159/000316648
  6. Chaddock, L., Erickson, K. I., Prakash, R. S., Voss, M. W., VanPatter, M., Pontifex, M. B., . . . Kramer, A. F. (2012). A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biological Psychology, 89, 260-268. doi: 10.1016/j.biopsycho.2011.10.017 Google Scholar
  7. Chen, Y. N., Mitra, S., & Schlaghecken, F. (2008). Sub-processes of working memory in the N-back task: An investigation using ERPs. Clinical Neurophysiology, 119, 1546–1559. doi: 10.1016/j.clinph.2008.03.003 PubMedCrossRefGoogle Scholar
  8. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., … Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 3316-3321. doi: 10.1073/pnas.0400266101
  9. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301. doi: 10.1016/S0166-2236(02)02143-4 PubMedCrossRefGoogle Scholar
  10. Curran, T. (1997). Higher-order associative learning in amnesia: Evidence from the serial reaction time task. Journal of Cognitive Neuroscience, 9, 522–533. doi: 10.1162/jocn.1997.9.4.522 PubMedCrossRefGoogle Scholar
  11. Curtin, F., & Schulz, P. (1998). Multiple correlations and bonferroni's correction. Biological Psychiatry, 44, 775–777. doi: 10.1016/S0006-3223(98)00043-2 PubMedCrossRefGoogle Scholar
  12. Dave, A. S., & Margoliash, D. (2000). Song replay during sleep and computational rules for sensorimotor vocal learning. Science, 290, 812–816. doi: 10.1126/science.290.5492.812 PubMedCrossRefGoogle Scholar
  13. Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 2037–2078. doi: 10.1016/j.neuropsychologia.2006.02.006 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Department of Health and Human Services. (2008). 2008 Physical Activity Guidelines for Americans (ODPHP Publication No. U0036). Washington, DC: Government Printing Office.Google Scholar
  15. Department of Health and Human Services [DHHS] and Department of Education [DOE]. (2000). Promoting better health for young people through physical activity and sports. A report to the President from the Secretary of Health and Human Services and the Secretary of Education. Silver Spring, MD: Centers for Disease Control.Google Scholar
  16. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114–126. doi: 10.1038/nrn2762 PubMedCrossRefGoogle Scholar
  17. Driver, H. S., & Taylor, S. R. (2000). Exercise and sleep. Sleep Medicine Reviews, 4, 387–402. doi: 10.1053/smrv.2000.0110 PubMedCrossRefGoogle Scholar
  18. Drollette, E. S., Shishido, T., Pontifex, M. B., & Hillman, C. H. (2012). Maintenance of cognitive control during and after walking in preadolescent children. Medicine and Science in Sports and Exercise, 44, 2017–2024. doi: 10.1249/MSS.0b013e318258bcd5 PubMedCrossRefGoogle Scholar
  19. Erickson, K. I., Banducci, S. E., Weinstein, A. M., MacDonald, A. W., Ferrell, R. E., Halder, I., … Manuck, S. B. (2013). The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychological Science, 24, 1770-1779. doi: 10.1177/0956797613480367
  20. Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., … Kramer, A. F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030-1039. doi: 10.1002/hipo.20547
  21. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017-3022. doi: 10.1073/pnas.1015950108
  22. Fenn, K. M., & Hambrick, D. Z. (2012). Individual differences in working memory capacity predict sleep-dependent memory consolidation. Journal of Experimental Psychology. General, 141, 404–410. doi: 10.1037/a0025268 PubMedCrossRefGoogle Scholar
  23. Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, Inc. accelerometer. Medicine and Science in Sports and Exercise, 777–781.Google Scholar
  24. Gordon, B. A., Rykhlevskaia, E. I., Brumback, C. R., Lee, Y., Elavsky, S., Konopack, J. F., … Fabiani, M. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology, 45, 825-838. doi: 10.1111/j.1469-8986.2008.00676.x
  25. Grafton, S. T., Hazeltine, E., & Ivry, R. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510. doi: 10.1162/jocn.1995.7.4.497 PubMedCrossRefGoogle Scholar
  26. Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45, 114–129. doi: 10.1037/a0014437 PubMedCrossRefGoogle Scholar
  27. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65. doi: 10.1038/nrn2298 PubMedCrossRefGoogle Scholar
  28. Ickmans, K., Clarys, P., Nijs, J., Meeus, M., Aerenhouts, D., Zinzen, E., … Pattyn, N. (2013). Association between cognitive performance, physical fitness, and physical activity level in women with chronic fatigue syndrome. Journal of Rehabilitation Research & Development, 50, 795-810. doi: 10.1682/JRRD.2012.08.0156
  29. Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107. doi: 10.1038/nn1825 PubMedCrossRefGoogle Scholar
  30. Kamijo, K., Khan, N. A., Pontifex, M. B., Scudder, M. R., Drollette, E. S., Raine, L. B., … Hillman, C. H. (2012). The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity, 20, 2406-2411. doi: 10.1038/oby.2012.112
  31. Kamijo, K., Pontifex, M. B., O'Leary, K. C., Scudder, M. R., Wu, C.-T., Castelli, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14, 1046–1058. doi: 10.1111/j.1467-7687.2011.01054.x PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kamijo, K., & Takeda, Y. (2009). General physical activity levels influence positive and negative priming effects in young adults. Clinical Neurophysiology, 120, 511–519. doi: 10.1016/j.clinph.2008.11.022 PubMedCrossRefGoogle Scholar
  33. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology. General, 133, 189–217. doi: 10.1037/0096-3445.133.2.189 PubMedCrossRefGoogle Scholar
  34. Kaufman, A. S., & Kaufman, N. L. (1990). Kaufman brief intelligence test manual. Circle Pines, MN: American Guidance Service.Google Scholar
  35. Kramer, A. F., Colcombe, S. J., McAuley, E., Scalf, P. E., & Erickson, K. I. (2005). Fitness, aging and neurocognitive function. Neurobiology of Aging, 26, 124–127. doi: 10.1016/j.neurobiolaging.2005.09.009 PubMedCrossRefGoogle Scholar
  36. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., … Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418-419. doi: 10.1038/22682
  37. Kramer, A. F., Hahn, S., McAuley, E., Cohen, N. J., Banich, M. T., Harrison, C., … Vakil, E. (2001). Exercise, aging and cognition: Healthy body, healthy mind? In A. D. Fisk, & W. Rogers (Eds.), Human Factors Interventions for the Health Care of Older Adults (pp. 91-120). Hillsdale, N.J.: Erlbaum.Google Scholar
  38. Louie, K., & Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29, 145–156. doi: 10.1016/S0896-6273(01)00186-6 PubMedCrossRefGoogle Scholar
  39. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838. doi: 10.1126/science.288.5472.1835 PubMedCrossRefGoogle Scholar
  40. McGaugh, J. L. (2000). Memory - a century of consolidation. Science, 287, 248–251. doi: 10.1126/science.287.5451.248 PubMedCrossRefGoogle Scholar
  41. Monti, J. M., Hillman, C. H., & Cohen, N. J. (2012). Aerobic fitness enhances relational memory in preadolescent children: The FITKids randomized control trial. Hippocampus, 22, 1876–1882. doi: 10.1002/hipo.22023 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., … Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638-5643. doi: 10.1073/pnas.0611721104
  43. Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9, 534–547. doi: 10.1162/jocn.1997.9.4.534 PubMedCrossRefGoogle Scholar
  44. Pontifex, M. B., Hillman, C. H., & Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46, 379–387. doi: 10.1111/j.1469-8986.2008.00782.x PubMedCentralPubMedCrossRefGoogle Scholar
  45. Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., … Hillman, C. H. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience, 23, 1332-1345. doi: 10.1162/jocn.2010.21528
  46. Quaney, B. M., Boyd, L. A., McDowd, J. M., Zahner, L. H., He, J., Mayo, M. S., & Macko, R. F. (2009). Aerobic exercise improves cognition and motor function poststroke. Neurorehabilitation and Neural Repair, 23, 879–885. doi: 10.1177/1545968309338193 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Rauch, S. L., Savage, C. R., Brown, H. D., Curran, T., Alpert, N. M., Kendrick, A., … Kosslyn, S. M. (1995). A PET investigation of implicit and explicit sequence learning. Human Brain Mapping, 3, 271-286. doi: 10.1002/hbm.460030403
  48. Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307. doi: 10.1016/j.neuroscience.2005.10.050 PubMedCrossRefGoogle Scholar
  49. Robertson, E. M. (2007). The serial reaction time task: Implicit motor skill learning? The Journal of Neuroscience, 27, 10073–10075. doi: 10.1523/JNEUROSCI.2747-07.2007 PubMedCrossRefGoogle Scholar
  50. Robertson, E. M., Tormos, J. M., Maeda, F., & Pascual-Leone, A. (2001). The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cerebral Cortex, 11, 628–635. doi: 10.1093/cercor/11.7.628 PubMedCrossRefGoogle Scholar
  51. Shvartz, E., & Reibold, R. C. (1990). Aerobic fitness norms for males and females aged 6 to 75 years: A review. Aviation, Space, and Environmental Medicine, 61, 3–11.PubMedGoogle Scholar
  52. Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., … Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72, 239-252. doi: 10.1097/PSY.0b013e3181d14633
  53. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231. doi: 10.1037/0033-295X.99.2.195 PubMedCrossRefGoogle Scholar
  54. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–460.Google Scholar
  55. Torriero, S., Oliveri, M., Koch, G., Caltagirone, C., & Petrosini, L. (2004). Interference of left and right cerebellar rTMS with procedural learning. Journal of Cognitive Neuroscience, 16, 1605–1611.PubMedCrossRefGoogle Scholar
  56. Uda, M., Ishido, M., Kami, K., & Masuhara, M. (2006). Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Research, 1104, 64–72. doi: 10.1016/j.brainres.2006.05.066 PubMedCrossRefGoogle Scholar
  57. Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498–505. doi: 10.3758/BF03192720 PubMedCrossRefGoogle Scholar
  58. van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270. doi: 10.1038/6368 PubMedCrossRefGoogle Scholar
  59. Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590. doi: 10.1111/j.1460-9568.2004.03720.x PubMedCrossRefGoogle Scholar
  60. Veltman, D. J., Rombouts, S. A., & Dolan, R. J. (2003). Maintenance versus manipulation in verbal working memory revisited: An fMRI study. NeuroImage, 18, 247–256. doi: 10.1016/S1053-8119(02)00049-6 PubMedCrossRefGoogle Scholar
  61. Verstynen, T. D., Lynch, B., Miller, D. L., Voss, M. W., Prakash, R. S., Chaddock, L., … Wojcicki, T. R. (2012). Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults. Journal of Aging Research, 2012, 1-11. doi: 10.1155/2012/939285
  62. Willingham, D. B., & Koroshetz, W. J. (1993). Evidence for dissociable motor skills in Huntingtons disease patients. Psychobiology, 21, 173–182.Google Scholar
  63. Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679. doi: 10.1126/science.8036517 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Matthew B. Pontifex
    • 1
    • 2
    Email author
  • Andrew C. Parks
    • 1
  • Patrick C. O’Neil
    • 1
  • Adriel R. Egner
    • 1
  • Joseph T. Warning
    • 1
  • Karin A. Pfeiffer
    • 1
  • Kimberly M. Fenn
    • 1
  1. 1.Michigan State UniversityEast LansingUSA
  2. 2.Department of Kinesiology, 27P IM Sports CircleMichigan State UniversityEast LansingUSA

Personalised recommendations