Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 14, Issue 3, pp 951–969 | Cite as

Feeling happy enhances early spatial encoding of peripheral information automatically: electrophysiological time-course and neural sources

  • Naomi Vanlessen
  • Valentina Rossi
  • Rudi De Raedt
  • Gilles Pourtois
Article

Abstract

Previous research has shown that positive mood may broaden attention, although it remains unclear whether this effect has a perceptual or a postperceptual locus. In this study, we addressed this question using high-density event-related potential methods. We randomly assigned participants to a positive or a neutral mood condition. Then they performed a demanding oddball task at fixation (primary task ensuring fixation) and a localization task of peripheral stimuli shown at three positions in the upper visual field (secondary task) concurrently. While positive mood did not influence behavioral performance for the primary task, it did facilitate stimulus localization on the secondary task. At the electrophysiological level, we found that the amplitude of the C1 component (reflecting an early retinotopic encoding of the stimulus in V1) was enhanced in the positive, as compared with the neutral, mood group. Importantly, this effect appeared to be largely automatic, because it occurred regardless of the task relevance of the peripheral stimulus and prior to top-down gain control effects seen at the level of the subsequent P1 component. This early effect was also observed irrespective of a change of the target-related P300 component (primary task) by positive mood. These results suggest that positive mood can automatically boost the spatial encoding of peripheral stimuli early on following stimulus onset. This effect can eventually underlie the broadening of spatial attention, which has been associated with this specific mood state.

Keywords

Positive emotion Attention ERP C1 V1 P300 

Notes

Acknowledgments

This work is supported by a Concerted Research Action Grant from Ghent University awarded to R.D.R. and G.P. (#BOF10/GOA/014). G.P. is funded by the European Research Council (Starting Grant #200758) and Ghent University (BOF Grant #05Z01708). V.R. is funded by a BOF grant from Ghent University (#BOF13/PDO/095). The authors have no conflict of interest to declare.

References

  1. Amaral, D. G., Behniea, H., & Kelly, J. L. (2003). Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience, 118, 1099–1120.PubMedCrossRefGoogle Scholar
  2. Anllo-Vento, L., Luck, S. J., & Hillyard, S. A. (1998). Spatio-temporal dynamics of attention to color: Evidence from human electrophysiology. Hum Brain Mapp, 6, 216–238.PubMedCrossRefGoogle Scholar
  3. Ashby, F. G., Isen, A. M., & Turken, U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychol Rev, 106, 529–550.PubMedCrossRefGoogle Scholar
  4. Basso, M. R., Schefft, B. K., Ris, M. D., & Dember, W. N. (1996). Mood and global-local visual processing. J Int Neuropsychol Soc, 2, 249–255.PubMedCrossRefGoogle Scholar
  5. Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. (1996). Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J Pers Assess, 67, 588–597.PubMedCrossRefGoogle Scholar
  6. Botvinick, M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychol Rev, 108, 624–652.PubMedCrossRefGoogle Scholar
  7. Bower, G. H., & Mayer, J. D. (1989). In Search of Mood-Dependent Retrieval. Journal of Social Behavior and Personality, 4, 121–156.Google Scholar
  8. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The Self-Assessment Manikin and the Semantic Differential. J Behav Ther Exp Psychiatry, 25, 49–59.PubMedCrossRefGoogle Scholar
  9. Bruyneel, L., van Steenbergen, H., Hommel, B., Band, G. P., De Raedt, R., & Koster, E. H. (2013). Happy but still focused: Failures to find evidence for a mood-induced widening of visual attention. Psychol Res, 77, 320–332.PubMedCrossRefGoogle Scholar
  10. Carver, C. S., & White, T. L. (1994). Behavioral-Inhibition, Behavioral Activation, and Affective Responses to Impending Reward and Punishment - the Bis Bas Scales. J Pers Soc Psychol, 67, 319–333.CrossRefGoogle Scholar
  11. Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychol, 73, 195–209.CrossRefGoogle Scholar
  12. Castiello, U., & Umiltà, C. (1992). Splitting Focal Attention. J Exp Psychol, 18, 837–848.CrossRefGoogle Scholar
  13. Clark, V. P., Fan, S., & Hillyard, S. A. (1995). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp, 2, 170–187.CrossRefGoogle Scholar
  14. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Rev Neurosci, 3, 201–215.CrossRefGoogle Scholar
  15. Derryberry, D., & Tucker, D. M. (1994). Motivating the focus of attention. In P. M. Neidenthal & S. Kitayama (Eds.), The heart’s eye: emotional influences in perception and attention (pp. 167–196). San Diego, CA: Academic.CrossRefGoogle Scholar
  16. Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp, 15, 95–111.PubMedCrossRefGoogle Scholar
  17. Eriksen, C. W., & Yeh, Y. Y. (1985). Allocation of attention in the visual field. [Research Support, U.S. Gov’t, P.H.S.]. J Exp Psychol, 11, 583–597.CrossRefGoogle Scholar
  18. Estrada, C. A., Isen, A. M., & Young, M. J. (1997). Positive affect facilitates integration of information and decreases anchoring in reasoning among physicians. Organ Behav Hum Dec, 72, 117–135.CrossRefGoogle Scholar
  19. Finucane, A. M., Whiteman, M. C., & Power, M. J. (2010). The effect of happiness and sadness on alerting, orienting, and executive attention. J Atten Disord, 13, 629–639.PubMedCrossRefGoogle Scholar
  20. Fredrickson, B. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. Am Psychol, 56, 218–226.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fredrickson, B. (2004). The broaden-and-build theory of positive emotions. Philos Trans R Soc Lond B, 359, 1367–1377.CrossRefGoogle Scholar
  22. Fredrickson, B., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition Emotion, 19, 313–332.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Fuchs, M., Kastner, J., Wagner, M., Hawes, S., & Ebersole, J. S. (2002). A standardized boundary element method volume conductor model. Clinical Neurophysiology, 113, 702–712.PubMedCrossRefGoogle Scholar
  24. Gasper, K., & Clore, G. L. (2002). Attending to the big picture: Mood and global versus local processing of visual information. Psy Sci, 13, 34–40.CrossRefGoogle Scholar
  25. Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A New Method for Off-Line Removal of Ocular Artifact. Electroencephalogr Clin Neurophysiol, 55, 468–484.PubMedCrossRefGoogle Scholar
  26. Gschwind, M., Pourtois, G., Schwartz, S., Van De Ville, D., & Vuilleumier, P. (2012). White-matter connectivity between face-responsive regions in the human brain. Cereb Cortex, 22, 1564–1576.PubMedCrossRefGoogle Scholar
  27. Handy, T. C., Soltani, M., & Mangun, G. R. (2001). Perceptual load and visuocortical processing: Event-related potentials reveal sensory-level selection. Psy Sci, 12, 213–218.CrossRefGoogle Scholar
  28. Heinze, H. J., Luck, S. J., Münte, T. F., Gös, A., Mangun, G. R., & Hillyard, S. A. (1994a). Attention to adjacent and seperate positions in space: An electrophysiological analysis. Percept Psychophys, 56, 45–52.Google Scholar
  29. Heinze, H. J., & Mangun, G. R. (1995). Electrophysiological Signs of Sustained and Transient Attention to Spatial Locations. Neuropsychologia, 33, 889–908.PubMedCrossRefGoogle Scholar
  30. Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Munte, T. F., et al. (1994b). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543–546.PubMedCrossRefGoogle Scholar
  31. Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci U S A, 95, 781–787.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Holmes, E. A. (2006). Positive interpretation training: Effects of mental imagery versus verbal training on positive mood. Behav ther, 37, 237–247.PubMedCrossRefGoogle Scholar
  33. Holmes, E. A., Coughtrey, A. E., & Connor, A. (2008). Looking at or Through Rose-Tinted Glasses? Imagery Perspective and Positive Mood. Emotion, 8, 875–879.PubMedCrossRefGoogle Scholar
  34. Huntsinger, J. R., Clore, G. L., & Bar-Anan, Y. (2010). Mood and Global-Local Focus: Priming a Local Focus Reverses the Link Between Mood and Global-Local Processing. Emotion, 10, 722–726.PubMedCrossRefGoogle Scholar
  35. Isen, A. M. (2000). Positive affect and decision making. In M. Lewis & J. M. Haviland-Jones (Eds.), Handbook of Emotions (pp. 417–435). New York: Guilford Press.Google Scholar
  36. Isen, A. M., & Daubman, K. A. (1984). The Influence of Affect on Categorization. J Pers Soc Psychol, 47, 1206–1217.CrossRefGoogle Scholar
  37. Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive Affect Facilitates Creative Problem-Solving. Journal of personality and social psychology, 52, 1122–1131.PubMedCrossRefGoogle Scholar
  38. Isen, A. M., Rosenzweig, A. S., & Young, M. J. (1991). The Influence of Positive Affect on Clinical Problem-Solving. Med Decis Making, 11, 221–227.PubMedCrossRefGoogle Scholar
  39. Ivry, R. B., & Robertson, L. C. (1998). The two sides of perception. Cambridge, MA: The MIT Press.Google Scholar
  40. Jans, B., Peters, J. C., & De Weerd, P. (2010). Visual spatial attention to multiple locations at once: The jury is still out. Psychol Rev, 117, 637–684.PubMedCrossRefGoogle Scholar
  41. Jeffreys, D. A., & Axford, J. G. (1972). Source Locations of Pattern-Specific Components of Human Visual Evoked-Potentials.1. Component of Striate Cortical Origin. Exp Brain Res, 16, 1–21.PubMedGoogle Scholar
  42. Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. Neuroimage, 34, 1600–1611.PubMedCrossRefGoogle Scholar
  43. Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. (2008). Spatial attention modulates initial afferent activity in human primary visual cortex. Cereb Cortex, 18, 2629–2636.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kelly S. P., Schroeder, C. E., & Lalor, E. C. (2013). What does polarity inversion of extrastriate activity tell us about striate contributions to the early VEP? A comment on Ales et al. (2010). Neuroimage, 76, 442–445.Google Scholar
  45. Kim, K. H., Kim, J. H., Yoon, J., & Jung, K. Y. (2008). Influence of task difficulty on the features of event-related potential during visual oddball task. Neurosci Lett, 445, 179–183.PubMedCrossRefGoogle Scholar
  46. Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577.PubMedCrossRefGoogle Scholar
  47. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for -tests and ANOVAs. Front Psychol, 4, 863.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). ERP studies of attention. Trends cogn sci, 4, 432–440.PubMedCrossRefGoogle Scholar
  49. Mangun, G. R., Buonocore, M. H., Girelli, M., & Jha, A. P. (1998). ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp, 6, 383–389.PubMedCrossRefGoogle Scholar
  50. Martin, E. A., & Kerns, J. G. (2011). The influence of positive mood on different aspects of cognitive control. Cognition Emotion, 25, 265–279.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci, 2, 364–369.PubMedCrossRefGoogle Scholar
  52. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci, 356, 1293–1322.PubMedCentralPubMedCrossRefGoogle Scholar
  53. McCarthy, G., & Donchin, E. (1981). A metric for thought: A comparison of P300 latency and reaction time. Science, 211, 77–80.PubMedCrossRefGoogle Scholar
  54. Mitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. A., Andrew, C. M., & Williams, S. C. R. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28, 1150–1162.PubMedCrossRefGoogle Scholar
  55. Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychol Bull, 132, 297–326.PubMedCrossRefGoogle Scholar
  56. Moriya, H., & Nittono, H. (2011). Effect of mood states on the breadth of spatial attentional focus: An event-related potential study. Neuropsychologia, 49, 1162–1170.PubMedCrossRefGoogle Scholar
  57. Muller, N. G., Bartelt, O. A., Donner, T. H., Villringer, A., & Brandt, S. A. (2003). A physiological correlate of the “zoom lens” of visual attention. J Neurosci, 23, 3561–3565.PubMedGoogle Scholar
  58. Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. [Research Support, Non-U.S. Gov’t Review]. Psychol Bull, 131, 510–532.PubMedCrossRefGoogle Scholar
  59. Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find Exp Clin Pharmacol, 24, 5–12.PubMedGoogle Scholar
  60. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Rev Neurosci, 9, 148–158.CrossRefGoogle Scholar
  61. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., et al. (2000). Guidelines for using human ERP to study cognition: Recognition standards and publication data. Psychophysiology, 37, 127–152.PubMedCrossRefGoogle Scholar
  62. Polich, J. (2007). Updating p300: An integrative theory of P3a and P3b. Clin Neurophysiol, 118, 2128–2148.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biol Psychol, 41, 103–146.PubMedCrossRefGoogle Scholar
  64. Portzky, M., Wagnild, G., De Bacquer, D., & Audenaert, K. (2010). Psychometric evaluation of the Dutch Resilience Scale RS-nl on 3265 healthy participants: A confirmation of the association between age and resilience found with the Swedish version. Scand J Caring Sci, 24, 86–92.PubMedCrossRefGoogle Scholar
  65. Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. [Clinical Trial Research Support, Non-U.S. Gov’t]. Cereb cortex, 14, 619–633.PubMedCrossRefGoogle Scholar
  66. Pourtois, G., Schettino, A., & Vuilleumier, P. (2013). Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biol Psychol, 92, 492–512.PubMedCrossRefGoogle Scholar
  67. Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Hum Brain Mapp, 30, 1723–1733.PubMedCrossRefGoogle Scholar
  68. Rauss, K. S., Schwartz, S., & Pourtois, G. (2011). Top-down effects on early visual processing in humans: A predictive coding framework. Neurosci Biobehav Rev, 35, 1237–1253.PubMedCrossRefGoogle Scholar
  69. Rossi, V., & Pourtois, G. (2012). State-dependent attention modulation of human primary visual cortex: A high density ERP study. Neuroimage, 60, 2365–2378.PubMedCrossRefGoogle Scholar
  70. Rossi, V., & Pourtois, G. (2013). Negative affective state mimics effects of perceptual load on spatial perception. Emotion, 13, 485–496.PubMedCrossRefGoogle Scholar
  71. Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proc Natl Acad Sci U S A, 104, 383–388.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Sawaki, R., & Katayama, J. (2007). Difficulty of discrimination modulates attentional capture for deviant information. Psychophysiology, 44, 374–382.PubMedCrossRefGoogle Scholar
  73. Schwartz, S., Vuillemier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cereb cortex, 15, 770–786.PubMedCrossRefGoogle Scholar
  74. Srinivasan, N., & Hanif, A. (2010). Global-happy and local-sad: Perceptual processing affects emotion identification. Cognition Emotion, 24, 1062–1069.CrossRefGoogle Scholar
  75. Stolarova, M., Keil, A., & Moratti, S. (2006). Modulation of the C1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception. Cereb Cortex, 16, 876–887.PubMedCrossRefGoogle Scholar
  76. Vanlessen, N., Rossi, V., De Raedt, R., & Pourtois, G. (2013). Positive emotion broadens attention focus through decreased position-specific spatial encoding in early visual cortex: Evidence from ERPs. Cogn Affect Behav Neurosci, 13, 60–79.PubMedCrossRefGoogle Scholar
  77. Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37, 190–203.PubMedCrossRefGoogle Scholar
  78. Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends Cogn Sci, 9, 585–594.PubMedCrossRefGoogle Scholar
  79. Watkins, E. R., & Moberly, N. J. (2009). Concreteness training reduces dysphoria: A pilot proof-of-principle study. Behavior Research & Therapy, 47(1), 48–53.Google Scholar
  80. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. J Pers Soc Psychol, 54, 1063–1070.PubMedCrossRefGoogle Scholar
  81. Weymar, M., Keil, A., & Hamm, A. O. (2013) Timing the fearful brain: unspecific hypervigilance and spatial attention in early visual perception. Soc Cogn Affect Neurosci.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Naomi Vanlessen
    • 1
  • Valentina Rossi
    • 1
  • Rudi De Raedt
    • 1
  • Gilles Pourtois
    • 1
  1. 1.Psychopathology and Affective Neuroscience Laboratory, Department of Experimental Clinical & Health PsychologyGhent UniversityGentBelgium

Personalised recommendations