Adolescent-specific patterns of behavior and neural activity during social reinforcement learning

  • Rebecca M. JonesEmail author
  • Leah H. Somerville
  • Jian Li
  • Erika J. Ruberry
  • Alisa Powers
  • Natasha Mehta
  • Jonathan Dyke
  • B. J. Casey


Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The present study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated. Seventy-eight of these participants completed the task during fMRI scanning. Modeling trial-by-trial learning, children and adults showed higher positive learning rates than did adolescents, suggesting that adolescents demonstrated less differentiation in their reaction times for peers who provided more positive feedback. Forming expectations about receiving positive social reinforcement correlated with neural activity within the medial prefrontal cortex and ventral striatum across age. Adolescents, unlike children and adults, showed greater insular activity during positive prediction error learning and increased activity in the supplementary motor cortex and the putamen when receiving positive social feedback regardless of the expected outcome, suggesting that peer approval may motivate adolescents toward action. While different amounts of positive social reinforcement enhanced learning in children and adults, all positive social reinforcement equally motivated adolescents. Together, these findings indicate that sensitivity to peer approval during adolescence goes beyond simple reinforcement theory accounts and suggest possible explanations for how peers may motivate adolescent behavior.


Adolescence fMRI Reinforcement Social acceptance Peers Brain 



We thank Gabi Wilner for assistance in data collection. We acknowledge the resources and staff at the Citigroup Biomedical Imaging Center and Biomedical Imaging Core at Weill Cornell Medical College. Supported in part by T32 DA0072774 (R.M.J.), R01 DA018879 (B.J.C.), and the Mortimer D. Sackler, MD family.

Supplementary material

13415_2014_257_MOESM1_ESM.pdf (297 kb)
Supplementary Figs. 1 and 2 (PDF 297 kb)


  1. Alexander, G. E., & Crutcher, M. D. (1990). Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology, 64(1), 133–150.PubMedGoogle Scholar
  2. Bhanji, J. P., & Delgado, M. R. (2013). The social brain and reward: Social information processing in the human striatum. WIREs Cognitive Science, 5(1), 61–73.Google Scholar
  3. Bishop, J. A., & Inderbitzen, H. M. (1995). Peer acceptance and friendship: An investigation of their relation to self-esteem. The Journal of Early Adolescence, 15(4), 476–489.CrossRefGoogle Scholar
  4. Blakemore, S. J., & Mills, K. L. (2013). Is adolescence a sensitive period for sociocultural processing? Annual Review of Psychology, 65, 187–207.Google Scholar
  5. Bray, S., & O'Doherty, J. (2007). Neural coding of reward-prediction error signals during classical conditioning with attractive faces. Journal of Neurophysiology, 97(4), 3036–3045.CrossRefPubMedGoogle Scholar
  6. Cauffman, E., Shulman, E. P., Steinberg, L., Claus, E., Banich, M. T., Graham, S., & Woolard, J. (2010). Age differences in affective decision making as indexed by performance on the Iowa Gambling Task. Developmental Psychology, 46(1), 193–207.CrossRefPubMedGoogle Scholar
  7. Caze, R. D., & van der Meer, M. A. (2013). Adaptive properties of differential learning rates for positive and negative outcomes. Biological Cybernetics, 107(6), 711–719.Google Scholar
  8. Chein, J., Albert, D., O'Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry. Developmental Science, 14(2), F1–F10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen, L. H., Baker, S. P., Braver, E. R., & Li, G. (2000). Carrying passengers as a risk factor for crashes fatal to 16- and 17-year-old drivers. JAMA, 283(12), 1578–1582.CrossRefPubMedGoogle Scholar
  10. Christakou, A., Gershman, S. J., Niv, Y., Simmons, A., Brammer, M., & Rubia, K. (2013). Neural and psychological maturation of decision-making in adolescence and young adulthood. Journal of Cognitive Neuroscience, 25(11), 1807–1823.CrossRefPubMedGoogle Scholar
  11. Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2010). The "Task B problem" and other considerations in developmental functional neuroimaging. Human Brain Mapping, 31(6), 852–862.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cohen, J. R., Asarnow, R. F., Sabb, F. W., Bilder, R. M., Bookheimer, S. Y., Knowlton, B. J., & Poldrack, R. A. (2010). A unique adolescent response to reward prediction errors. Nature Neuroscience, 13(6), 669–671.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Collins, W. A., & Steinberg, L. (2007). Adolescent development in interpersonal context. In Handbook of Child Psychology. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
  14. Craig, A. D. (2009). How do you feel–now? The anterior insula and human awareness. Nature Review Neuroscience, 10(1), 59–70.CrossRefGoogle Scholar
  15. Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189–195.CrossRefPubMedGoogle Scholar
  16. Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Review Neuroscience, 13(9), 636–650.CrossRefGoogle Scholar
  17. Cunnington, R., Windischberger, C., Deecke, L., & Moser, E. (2002). The preparation and execution of self-initiated and externally-triggered movement: A study of event-related fMRI. NeuroImage, 15(2), 373–385.CrossRefPubMedGoogle Scholar
  18. Damasio, A. (2003). Feelings of emotion and the self. Annals of the New York Academy of Sciences, 1001, 253–261.CrossRefPubMedGoogle Scholar
  19. Dodge, K. A., Lansford, J. E., Burks, V. S., Bates, J. E., Pettit, G. S., Fontaine, R., & Price, J. M. (2003). Peer rejection and social information-processing factors in the development of aggressive behavior problems in children. Child Development, 74(2), 374–393.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2001). The effect of task relevance on the cortical response to changes in visual and auditory stimuli: An event-related fMRI study. NeuroImage, 14(6), 1256–1267.CrossRefPubMedGoogle Scholar
  21. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An FMRI study of social exclusion. Science, 302(5643), 290–292.CrossRefPubMedGoogle Scholar
  22. Engelmann, J. B., Moore, S., Monica Capra, C., & Berns, G. S. (2012). Differential neurobiological effects of expert advice on risky choice in adolescents and adults. Social Cognitive and Affective Neuroscience, 7(5), 557–567.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fareri, D. S., Niznikiewicz, M. A., Lee, V. K., & Delgado, M. R. (2012). Social network modulation of reward-related signals. Journal of Neuroscience, 32(26), 9045–9052.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–1902.CrossRefPubMedGoogle Scholar
  25. Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G., & Casey, B. J. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26(25), 6885–6892.CrossRefPubMedGoogle Scholar
  26. Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: An experimental study. Developmental Psychology, 41(4), 625–635.CrossRefPubMedGoogle Scholar
  27. Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K., & Luna, B. (2010). Immaturities in reward processing and its influence on inhibitory control in adolescence. Cerebral Cortex, 20(7), 1613–1629.CrossRefPubMedGoogle Scholar
  28. Glover, G. H., & Thomason, M. E. (2004). Improved combination of spiral-in/out images for BOLD fMRI. Magnetic Resonance in Medicine, 51(4), 863–868.CrossRefPubMedGoogle Scholar
  29. Guyer, A. E., Choate, V. R., Pine, D. S., & Nelson, E. E. (2012). Neural circuitry underlying affective response to peer feedback in adolescence. Social Cognitive and Affective Neuroscience, 7(1), 81–92.CrossRefPubMedGoogle Scholar
  30. Guyer, A. E., McClure-Tone, E. B., Shiffrin, N. D., Pine, D. S., & Nelson, E. E. (2009). Probing the neural correlates of anticipated peer evaluation in adolescence. Child Development, 80(4), 1000–1015.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 1360–1366.CrossRefPubMedGoogle Scholar
  32. Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284–294.CrossRefPubMedGoogle Scholar
  33. Johnstone, T., Somerville, L. H., Alexander, A. L., Oakes, T. R., Davidson, R. J., Kalin, N. H., & Whalen, P. J. (2005). Stability of amygdala BOLD response to fearful faces over multiple scan sessions. NeuroImage, 25(4), 1112–1123.CrossRefPubMedGoogle Scholar
  34. Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Libby, V., Glover, G., ... Casey, B. J. (2011). Behavioral and neural properties of social reinforcement learning. Journal of Neuroscience, 31(37), 13039–13045.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kahnt, T., Park, S. Q., Cohen, M. X., Beck, A., Heinz, A., & Wrase, J. (2009). Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions. Journal of Cognitive Neuroscience, 21(7), 1332–1345.CrossRefPubMedGoogle Scholar
  36. Kohls, G., Peltzer, J., Herpertz-Dahlmann, B., & Konrad, K. (2009). Differential effects of social and non-social reward on response inhibition in children and adolescents. Developmental Science, 12(4), 614–625.CrossRefPubMedGoogle Scholar
  37. La Greca, A. M., Prinstein, M. J., & Fetter, M. D. (2001). Adolescent peer crowd affiliation: Linkages with health-risk behaviors and close friendships. Journal of Pediatric Psychology, 26(3), 131–143.CrossRefPubMedGoogle Scholar
  38. Laird, R. D., Jordan, K. Y., Dodge, K. A., Pettit, G. S., & Bates, J. E. (2001). Peer rejection in childhood, involvement with antisocial peers in early adolescence, and the development of externalizing behavior problems. Development and Psychopathology, 13(2), 337–354.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 42–58.CrossRefPubMedGoogle Scholar
  40. Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214(5–6), 579–591.CrossRefPubMedGoogle Scholar
  41. Larson, R., & Richards, M. H. (1991). Daily companionship in late childhood and early adolescence: Changing developmental contexts. Child Development, 62(2), 284–300.CrossRefPubMedGoogle Scholar
  42. Lin, A., Adolphs, R., & Rangel, A. (2012). Social and monetary reward learning engage overlapping neural substrates. Social Cognitive and Affective Neuroscience, 7(3), 274–281.CrossRefPubMedGoogle Scholar
  43. Luthar, S. S., & D'Avanzo, K. (1999). Contextual factors in substance use: A study of suburban and inner-city adolescents. Development and Psychopathology, 11(4), 845–867.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Masten, C. L., Eisenberger, N. I., Borofsky, L. A., Pfeifer, J. H., McNealy, K., Mazziotta, J. C., & Dapretto, M. (2009). Neural correlates of social exclusion during adolescence: Understanding the distress of peer rejection. Social Cognitive and Affective Neuroscience, 4(2), 143–157.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Masten, C. L., Telzer, E. H., Fuligni, A. J., Lieberman, M. D., & Eisenberger, N. I. (2012). Time spent with friends in adolescence relates to less neural sensitivity to later peer rejection. Social Cognitive and Affective Neuroscience, 7, 106–114.CrossRefPubMedGoogle Scholar
  46. Meshi, D., Morawetz, C., & Heekeren, H. R. (2013). Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use. Frontiers in Human Neuroscience, 7, 439.CrossRefPubMedPubMedCentralGoogle Scholar
  47. O'Doherty, J. P., Buchanan, T. W., Seymour, B., & Dolan, R. J. (2006). Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron, 49(1), 157–166.CrossRefPubMedGoogle Scholar
  48. Pfeifer, J. H., & Blakemore, S. J. (2012). Adolescent social cognitive and affective neuroscience: Past, present, and future. Social Cognitive and Affective Neuroscience, 7(1), 1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Prinstein, M. J., & Aikins, J. W. (2004). Cognitive moderators of the longitudinal association between peer rejection and adolescent depressive symptoms. Journal of Abnormal Child Psychology, 32(2), 147–158.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Prinstein, M. J., Boergers, J., & Spirito, A. (2001). Adolescents' and their friends' health-risk behavior: Factors that alter or add to peer influence. Journal of Pediatric Psychology, 26(5), 287–298.CrossRefPubMedGoogle Scholar
  51. Rademacher, L., Krach, S., Kohls, G., Irmak, A., Grunder, G., & Spreckelmeyer, K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage, 49(4), 3276–3285.CrossRefPubMedGoogle Scholar
  52. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton Century Crofts.Google Scholar
  53. Rudolph, K. D., Caldwell, M. S., & Conley, C. S. (2005). Need for approval and children's well-being. Child Development, 76(2), 309–323.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.CrossRefPubMedGoogle Scholar
  55. Seymour, B., O'Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., ... Frackowiak, R. S. (2004). Temporal difference models describe higher-order learning in humans. Nature, 429(6992), 664–667.CrossRefPubMedGoogle Scholar
  56. Silk, J. S., Stroud, L. R., Siegle, G. J., Dahl, R. E., Lee, K. H., & Nelson, E. E. (2012). Peer acceptance and rejection through the eyes of youth: Pupillary, eyetracking and ecological data from the Chatroom Interact task. Social Cognitive and Affective Neuroscience, 7, 93–105.CrossRefPubMedGoogle Scholar
  57. Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Science, 13(8), 334–340.CrossRefGoogle Scholar
  58. Somerville, L. H. (2013). The teenage brain: Sensitivity to social evaluation. Current Directions in Psychological Science, 22(2), 121–127.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Somerville, L. H., Jones, R. M., Ruberry, E. J., Dyke, J. P., Glover, G., & Casey, B. J. (2013). The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychological Science, 24(8), 1554–1562.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78–106.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York, NY: Thieme Medical Publishers.Google Scholar
  62. Teslovich, T., Mulder, M., Franklin, N. T., Ruberry, E. J., Millner, A., Somerville, L. H., et al. (2014). Adolescents let sufficient evidence accumulate before making a decision when large incentives are at stake. Developmental Science, 17(1), 59–70.Google Scholar
  63. van den Bos, W., Cohen, M. X., Kahnt, T., & Crone, E. A. (2012). Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. Cerebral Cortex, 22(6), 1247–1255.CrossRefPubMedGoogle Scholar
  64. van den Bos, W., McClure, S. M., Harris, L. T., Fiske, S. T., & Cohen, J. D. (2007). Dissociating affective evaluation and social cognitive processes in the ventral medial prefrontal cortex. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 337–346.CrossRefGoogle Scholar
  65. van Duijvenvoorde, A. C., Zanolie, K., Rombouts, S. A., Raijmakers, M. E., & Crone, E. A. (2008). Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development. Journal of Neuroscience, 28(38), 9495–9503.CrossRefPubMedGoogle Scholar
  66. Van Leijenhorst, L., Zanolie, K., Van Meel, C. S., Westenberg, P. M., Rombouts, S. A., & Crone, E. A. (2010). What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence. Cerebral Cortex, 20(1), 61–69.CrossRefPubMedGoogle Scholar
  67. Vanhalst, J., Luyckx, K., Scholte, R. H., Engels, R. C., & Goossens, L. (2013). Low self-esteem as a risk factor for loneliness in adolescence: Perceived - but not actual - social acceptance as an underlying mechanism. Journal of Abnormal Child Psychology, 41(7), 1067–1081.CrossRefPubMedGoogle Scholar
  68. Veronneau, M. H., Vitaro, F., Brendgen, M., Dishion, T. J., & Tremblay, R. E. (2010). Transactional analysis of the reciprocal links between peer experiences and academic achievement from middle childhood to early adolescence. Developmental Psychology, 46(4), 773–790.CrossRefPubMedGoogle Scholar
  69. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.Google Scholar
  70. Weigard, A., Chein, J., Albert, D., Smith, A., & Steinberg, L. (2014). Effects of anonymous peer observation on adolescents' preference for immediate rewards. Developmental Science, 17(1), 71–78.Google Scholar
  71. Wentzel, K. R., & Caldwell, K. (1997). Friendships, peer acceptance, and group membership: relations to academic achievement in middle school. Child Development, 68(6), 1198–1209.CrossRefPubMedGoogle Scholar
  72. White, B. A., & Kistner, J. A. (2011). Biased self-perceptions, peer rejection, and aggression in children. Journal of Abnormal Child Psychology, 39(5), 645–656.CrossRefPubMedGoogle Scholar
  73. Wiese, H., Stude, P., Nebel, K., de Greiff, A., Forsting, M., Diener, H. C., & Keidel, M. (2004). Movement preparation in self-initiated versus externally triggered movements: An event-related fMRI-study. Neuroscience Letters, 371(2–3), 220–225.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Rebecca M. Jones
    • 1
    Email author
  • Leah H. Somerville
    • 2
  • Jian Li
    • 3
  • Erika J. Ruberry
    • 1
  • Alisa Powers
    • 1
  • Natasha Mehta
    • 1
  • Jonathan Dyke
    • 4
  • B. J. Casey
    • 1
  1. 1.The Sackler Institute for Developmental PsychobiologyWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of PsychologyHarvard UniversityCambridgeUSA
  3. 3.Department of PsychologyPeking UniversityBeijingChina
  4. 4.Department of RadiologyWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations