Cognitive, Affective, & Behavioral Neuroscience

, Volume 14, Issue 3, pp 1104–1114 | Cite as

The nature of hemispheric specialization for prosody perception

  • Jurriaan Witteman
  • Katharina S. Goerlich-Dobre
  • Sander Martens
  • André Aleman
  • Vincent J. Van Heuven
  • Niels O. Schiller


Recent evidence suggests a relative right-hemispheric specialization for emotional prosody perception, whereas linguistic prosody perception is under bilateral control. It is still unknown, however, how the hemispheric specialization for prosody perception might arise. Two main hypotheses have been put forward. Cue-dependent hypotheses, on the one hand, propose that hemispheric specialization is driven by specialization for the non-prosody-specific processing of acoustic cues. The functional lateralization hypothesis, on the other hand, proposes that hemispheric specialization is dependent on the communicative function of prosody, with emotional and linguistic prosody processing being lateralized to the right and left hemispheres, respectively. In the present study, the functional lateralization hypothesis of prosody perception was systematically tested by instructing one group of participants to evaluate the emotional prosody, and another group the linguistic prosody dimension of bidimensional prosodic stimuli in a dichotic-listening paradigm, while event-related potentials were recorded. The results showed that the right-ear advantage was associated with decreased latencies for an early negativity in the contralateral hemisphere. No evidence was found for functional lateralization. These findings suggest that functional lateralization effects for prosody perception are small and support the structural model of dichotic listening.


Prosody Emotional Linguistic Lateralization Dichotic listening ERP 


Author note

We thank Jos Pacilly for doing programming work for this study.

Supplementary material

13415_2014_255_MOESM1_ESM.pdf (805 kb)
ESM (PDF 805 kb)


  1. Ahonniska, J., Cantell, M., Tolvanen, A., & Lyytinen, H. (1993). Speech perception and brain laterality: The effect of ear advantage on auditory event-related potentials. Brain and Language, 45, 127–146.PubMedCrossRefGoogle Scholar
  2. Becker, F., & Reinvang, I. (2007). Successful syllable detection in aphasia despite processing impairments as revealed by event-related potentials. Behavioral and Brain Functions, 3, 6. doi: 10.1186/1744-9081-3-6 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brechmann, A., & Scheich, H. (2005). Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex, 15, 578–587.PubMedCrossRefGoogle Scholar
  4. Briggs, K. E., & Martin, F. H. (2009). Affective picture processing and motivational relevance: Arousal and valence effects on ERPs in an oddball task. International Journal of Psychophysiology, 72, 299–306.PubMedCrossRefGoogle Scholar
  5. Brück, C., Kreifelts, B., & Wildgruber, D. (2011). Emotional voices in context: A neurobiological model of multimodal affective information processing. Physics of Life Reviews, 8, 383–403.PubMedCrossRefGoogle Scholar
  6. Combs, L. A., & Polich, J. (2006). P3a from auditory white noise stimuli. Clinical Neurophysiology, 117, 1106–1112.PubMedCrossRefGoogle Scholar
  7. Cutler, A. (2005). Lexical stress. In D. B. Pisoni & R. E. Remez (Eds.), The handbook of speech perception (pp. 264–289). Oxford, UK: Blackwell.CrossRefGoogle Scholar
  8. Davidson, R. J., & Hugdahl, E. K. (Eds.). (1995). Brain asymmetry. Cambridge, MA: MIT Press.Google Scholar
  9. Della Penna, S., Brancucci, A., Babiloni, C., Franciotti, R., Pizzella, V., Rossi, D., & Romani, G. L. (2007). Lateralization of dichotic speech stimuli is based on specific auditory pathway interactions: Neuromagnetic evidence. Cerebral Cortex, 17, 2303–2311. doi: 10.1093/cercor/bhl139 PubMedCrossRefGoogle Scholar
  10. Eichele, T., Nordby, H., Rimol, L. M., & Hugdahl, K. (2005). Asymmetry of evoked potential latency to speech sounds predicts the ear advantage in dichotic listening. Cognitive Brain Research, 24, 405–412.PubMedCrossRefGoogle Scholar
  11. Erhan, H., Borod, J. C., Tenke, C. E., & Bruder, G. E. (1998). Identification of emotion in a dichotic listening task: Event-related brain potential and behavioral findings. Brain and Cognition, 37, 286–307.PubMedCrossRefGoogle Scholar
  12. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. doi: 10.3758/BF03193146 PubMedCrossRefGoogle Scholar
  13. Fitzgerald, P. G., & Picton, T. W. (1983). Event-related potentials recorded during the discrimination of improbable stimuli. Biological Psychology, 17, 241–276.PubMedCrossRefGoogle Scholar
  14. Friederici, A. D., & Alter, K. (2004). Lateralization of auditory language functions: A dynamic dual pathway model. Brain and Language, 89, 267–276.PubMedCrossRefGoogle Scholar
  15. Gaál, Z. A., Csuhaj, R., & Molnár, M. (2007). Age-dependent changes of auditory evoked potentials—Effect of task difficulty. Biological Psychology, 76, 196–208.PubMedCrossRefGoogle Scholar
  16. Greenwald, R. R., & Jerger, J. (2003). Neuroelectric correlates of hemispheric asymmetry: spectral discrimination and stimulus competition. Journal of the American Academy of Audiology, 14, 434–443.PubMedGoogle Scholar
  17. Grimshaw, G. M., Kwasny, K. M., Covell, E., & Johnson, R. A. (2003). The dynamic nature of language lateralization: Effects of lexical and prosodic factors. Neuropsychologia, 41, 1008–1019.PubMedCrossRefGoogle Scholar
  18. Hajcak, G., Moser, J. S., & Simons, R. F. (2006). Attending to affect: Appraisal strategies modulate the electrocortical response to arousing pictures. Emotion, 6, 517–522.PubMedCrossRefGoogle Scholar
  19. Kotz, S. A., & Paulmann, S. (2011). Emotion, language, and the brain. Language and Linguistics Compass, 5, 108–125.CrossRefGoogle Scholar
  20. Luks, T. L., Nusbaum, H. C., & Levy, J. (1998). Hemispheric involvement in the perception of syntactic prosody is dynamically dependent on task demands. Brain and Language, 65, 313–332.PubMedCrossRefGoogle Scholar
  21. Molnár, M. (1999). The dimensional complexity of the P3 event-related potential: Area-specific and task-dependent features. Clinical Neurophysiology, 110, 31–38.PubMedCrossRefGoogle Scholar
  22. Nager, W., Rosenthal, O., Bohrer, I., Teder-Sälejärvi, W. A., & Münte, T. F. (2001). Human event-related potentials and distraction during selective listening. Neuroscience Letters, 297, 1–4.PubMedCrossRefGoogle Scholar
  23. Naumann, E., Bartussek, D., Diedrich, O., & Laufer, M. (1992). Assessing cognitive and affective information processing functions of the brain by means of the late positive complex of the event-related potential. Journal of Psychophysiology, 6, 285–298.Google Scholar
  24. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi: 10.1016/0028-3932(71)90067-4 PubMedCrossRefGoogle Scholar
  25. Paulmann, S., Jessen, S., & Kotz, S. (2012). It’s special the way you say it: An ERP investigation on the temporal dynamics of two types of prosody. Neuropsychologia, 50, 1609–1620.PubMedCrossRefGoogle Scholar
  26. Pell, M. D. (1998). Recognition of prosody following unilateral brain lesion: Influence of functional and structural attributes of prosodic contours. Neuropsychologia, 36, 701–715.PubMedCrossRefGoogle Scholar
  27. Polich, J., & Bondurant, T. (1996). P300 sequence effects, probability, and interstimulus interval. Physiology and Behavior, 61, 843–849.CrossRefGoogle Scholar
  28. Sandmann, P., Eichele, T., Specht, K., Jäncke, L., Rimol, L. M., Nordby, H., & Hugdahl. (2007). Hemispheric asymmetries in the processing of temporal acoustic cues in consonant–vowel syllables. Restorative Neurology and Neuroscience, 25, 227–240.PubMedGoogle Scholar
  29. Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40, 227–256.CrossRefGoogle Scholar
  30. Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10, 24–30.PubMedCrossRefGoogle Scholar
  31. Sussman, E., Winkler, I., Huotilainen, M., Ritter, W., & Näätänen, R. (2002). Top-down effects can modify the initially stimulus-driven auditory organization. Cognitive Brain Research, 13, 393–405.PubMedCrossRefGoogle Scholar
  32. Teder, W., Alho, K., Reinikainen, K., & Näätänen, R. (1993). Interstimulus interval and the selective-attention effect on auditory ERPs: “N1 enhancement” versus processing negativity. Psychophysiology, 30, 71–81.PubMedCrossRefGoogle Scholar
  33. Van Lancker, D. (1980). Cerebral lateralization of pitch cues in the linguistic signal. Papers in Linguistics: International Journal of Human Communication, 13, 201–277.CrossRefGoogle Scholar
  34. Van Lancker, D., & Sidtis, J. (1992). The identification of affective-prosodic stimuli by left- and right-hemisphere-damaged subjects: All errors are not created equal. Journal of Speech and Hearing Research, 35, 963–970.PubMedGoogle Scholar
  35. Wildgruber, D., Hertrich, I., Riecker, A., Erb, M., Anders, S., Grodd, W., & Ackermann, H. (2004). Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cerebral Cortex, 14, 1384–1389. doi: 10.1093/cercor/bhh099 PubMedCrossRefGoogle Scholar
  36. Witteman, J., Van Heuven, V. J., & Schiller, N. O. (2012). Hearing feelings: A quantitative meta-analysis on the neuroimaging literature of emotional prosody perception. Neuropsychologia, 50, 2752–2763. doi: 10.1016/j.neuropsychologia.2012.07.026 PubMedCrossRefGoogle Scholar
  37. Witteman, J., van IJzendoorn, M. H., van de Velde, D., van Heuven, V. J., & Schiller, N. O. (2011). The nature of hemispheric specialization for linguistic and emotional prosodic perception: A meta-analysis of the lesion literature. Neuropsychologia, 49, 3722–3738. doi: 10.1016/j.neuropsychologia.2011.09.028 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Jurriaan Witteman
    • 1
    • 2
    • 5
  • Katharina S. Goerlich-Dobre
    • 3
    • 4
  • Sander Martens
    • 3
  • André Aleman
    • 3
  • Vincent J. Van Heuven
    • 1
    • 2
  • Niels O. Schiller
    • 1
    • 2
  1. 1.Leiden Institute for Brain and CognitionLeiden UniversityLeidenThe Netherlands
  2. 2.Leiden University Centre for LinguisticsLeiden UniversityLeidenThe Netherlands
  3. 3.Neuroimaging Center, Department of Neuroscience, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
  4. 4.Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical SchoolRWTH Aachen UniversityAachenGermany
  5. 5.Leiden UniversityLeidenThe Netherlands

Personalised recommendations