Advertisement

Reduced susceptibility to confirmation bias in schizophrenia

  • Bradley B. Doll
  • James A. Waltz
  • Jeffrey Cockburn
  • Jaime K. Brown
  • Michael J. Frank
  • James M. Gold
Article

Abstract

Patients with schizophrenia (SZ) show cognitive impairments on a wide range of tasks, with clear deficiencies in tasks reliant on prefrontal cortex function and less consistently observed impairments in tasks recruiting the striatum. This study leverages tasks hypothesized to differentially recruit these neural structures to assess relative deficiencies of each. Forty-eight patients and 38 controls completed two reinforcement learning tasks hypothesized to interrogate prefrontal and striatal functions and their interaction. In each task, participants learned reward discriminations by trial and error and were tested on novel stimulus combinations to assess learned values. In the task putatively assessing fronto-striatal interaction, participants were (inaccurately) instructed that one of the stimuli was valuable. Consistent with prior reports and a model of confirmation bias, this manipulation resulted in overvaluation of the instructed stimulus after its true value had been experienced. Patients showed less susceptibility to this confirmation bias effect than did controls. In the choice bias task hypothesized to more purely assess striatal function, biases in endogenously and exogenously chosen actions were assessed. No group differences were observed. In the subset of participants who showed learning in both tasks, larger group differences were observed in the confirmation bias task than in the choice bias task. In the confirmation bias task, patients also showed impairment in the task conditions with no prior instruction. This deficit was most readily observed on the most deterministic discriminations. Taken together, these results suggest impairments in fronto-striatal interaction in SZ, rather than in striatal function per se.

Keywords

Schizophrenia Reward Decision-making 

Notes

Acknowledgments

This work was supported by National Institute of Mental Health R01 MH080066. We thank Dylan A Simon for helpful discussions.

References

  1. Andreasen, N.C., Pressler, M., Nopoulos, P., Miller, D., Ho, B.C., 2010. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol Psychiatry 67, 255–262.CrossRefPubMedGoogle Scholar
  2. Andreasen, N.C., 1983. Scale for the Assessment of Negative Symptoms (SANS). Iowa City, IA, University of Iowa.Google Scholar
  3. Averbeck, B.B., Evans, S., Chouhan, V., Bristow, E., Shergill, S.S., 2011. Probabilistic learning and inference in schizophrenia. Schizophr Res 127, 115–122.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barch, D.M., Ceaser, A., 2012. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci 16, 27–34.CrossRefPubMedGoogle Scholar
  5. Bates, D., Maechler, M., Bolker, B., 2011. lme4: Linear mixed-effects models using S4 classes. Version: 0.999999-2. Technical Report.Google Scholar
  6. Biele, G., Rieskamp, J., Gonzalez, R., 2009. Computational models for the combination of advice and individual learning. Cogn Sci 33, 206–242.CrossRefPubMedGoogle Scholar
  7. Biele, G., Rieskamp, J., Krugel, L.K., Heekeren, H.R., 2011. The neural basis of following advice. PLoS Biol 9, e1001089.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brown, R.G., Marsden, C.D., 1988. Internal versus external cues and the control of attention in parkinson’s disease. Brain 111 ( Pt 2), 323–345.CrossRefPubMedGoogle Scholar
  9. Bunge, S.A., Kahn, I., Wallis, J.D., Miller, E.K., Wagner, A.D., 2003. Neural circuits subserving the retrieval and maintenance of abstract rules. J Neurophysiol 90, 3419–3428.CrossRefPubMedGoogle Scholar
  10. Cockburn, J., Collins, A.G.E., Frank, M.J. 2014. Why do we value the freedom to choose?: Genetic polymorphism predicts the impact of choice on value. Submitted.Google Scholar
  11. Cohen, J.D., Servan-Schreiber, D., 1992. Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 99, 45–77.CrossRefPubMedGoogle Scholar
  12. Collins, A.G.E., Frank, M.J., 2012. How much of reinforcement learning is working memory, not reinforcement learning? a behavioral, computational, and neurogenetic analysis. Eur J Neurosci 35, 1024–1035.CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Frias, C.M., Marklund, P., Eriksson, E., Larsson, A., Oman, L., Annerbrink, K., Bäckman, L., Nilsson, L.G., Nyberg, L., 2010. Influence of comt gene polymorphism on fmri-assessed sustained and transient activity during a working memory task. J Cogn Neurosci 22, 1614–1622.CrossRefPubMedGoogle Scholar
  14. Doll, B.B., Hutchison, K.E., Frank, M.J., 2011. Dopaminergic genes predict individual differences in susceptibility to confirmation bias. J Neurosci 31, 6188–6198.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doll, B.B., Jacobs, W.J., Sanfey, A.G., Frank, M.J., 2009. Instructional control of reinforcement learning: A behavioral and neurocomputational investigation. Brain Res 1299, 74–94.CrossRefPubMedPubMedCentralGoogle Scholar
  16. DSM, 1994. Diagnostic and statistical manual of mental disorders. American Psychiatric Association. Washington, DC. 4th edition.Google Scholar
  17. Egan, M.F., Goldberg, T.E., Kolachana, B.S., Callicott, J.H., Mazzanti, C.M., Straub, R.E., Goldman, D., Weinberger, D.R., 2001. Effect of comt val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98, 6917–6922.CrossRefPubMedPubMedCentralGoogle Scholar
  18. First, M., Spitzer, R., Gibbon, M., Williams, J., 1997. Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I). Washington, DC: American Psychiatric Press.Google Scholar
  19. Fox, J., Weisberg, S., 2011. An R Companion to Applied Regression. Sage.Google Scholar
  20. Frank, M.J., 2005. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J Cogn Neurosci 17, 51–72.CrossRefPubMedGoogle Scholar
  21. Frank, M.J., Claus, E.D., 2006. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113, 300–326.CrossRefPubMedGoogle Scholar
  22. Frank, M.J., Moustafa, A.A., Haughey, H.M., Curran, T., Hutchison, K.E., 2007. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A 104, 16311–16316.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frank, M.J., Seeberger, L.C., O’Reilly, R.C., 2004. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943.CrossRefPubMedGoogle Scholar
  24. François-Brosseau, F.E., Martinu, K., Strafella, A.P., Petrides, M., Simard, F., Monchi, O., 2009. Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand. Eur J Neurosci 29, 1277–1286.CrossRefPubMedGoogle Scholar
  25. Fusar-Poli, P., Meyer-Lindenberg, A., 2013. Striatal presynaptic dopamine in schizophrenia, part ii: Meta-analysis of [(18)f/(11)c]-dopa pet studies. Schizophr Bull 39, 33–42.CrossRefPubMedGoogle Scholar
  26. Gogos, J.A., Morgan, M., Luine, V., Santha, M., Ogawa, S., Pfaff, D., Karayiorgou, M., 1998. Catechol-o-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A 95, 9991–9996.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gold, J.M., Hahn, B., Strauss, G.P., Waltz, J.A., 2009. Turning it upside down: areas of preserved cognitive function in schizophrenia. Neuropsychol Rev 19, 294–311.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gold, J.M., Waltz, J.A., Matveeva, T.M., Kasanova, Z., Strauss, G.P., Herbener, E.S., Collins, A.G.E., Frank, M.J., 2012. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch Gen Psychiatry 69, 129–138.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Green, M.F., Nuechterlein, K.H., Gold, J.M., Barch, D.M., Cohen, J., Essock, S., Fenton, W.S., Frese, F., Goldberg, T.E., Heaton, R.K., Keefe, R.S.E., Kern, R.S., Kraemer, H., Stover, E., Weinberger, D.R., Zalcman, S., Marder, S.R., 2004. Approaching a consensus cognitive battery for clinical trials in schizophrenia: The nimh-matrics conference to select cognitive domains and test criteria. Biol Psychiatry 56, 301–307.CrossRefPubMedGoogle Scholar
  30. Jocham, G., Klein, T.A., Ullsperger, M., 2011. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J Neurosci 31, 1606–1613.CrossRefPubMedGoogle Scholar
  31. Kirkpatrick, B., Strauss, G.P., Nguyen, L., Fischer, B.A., Daniel, D.G., Cienfuegos, A., Marder, S.R., 2011. The brief negative symptom scale: psychometric properties. Schizophr Bull 37, 300–305.CrossRefPubMedGoogle Scholar
  32. Lesh, T.A., Niendam, T.A., Minzenberg, M.J., Carter, C.S., 2011. Cognitive control deficits in schizophrenia: Mechanisms and meaning. Neuropsychopharmacology 36, 316–338.CrossRefPubMedGoogle Scholar
  33. Li, J., Delgado, M.R., Phelps, E.A., 2011. How instructed knowledge modulates the neural systems of reward learning. Proc Natl Acad Sci U S A 108, 55–60.CrossRefPubMedGoogle Scholar
  34. MATRICS, 1996. MATRICS Consensus Cognitive Battery Administration Manual. Matrics Assessment Inc. Los Angeles, CA.Google Scholar
  35. Nickerson, R.S., 1998. Confirmation bias: a ubiquitous phenomenon in many guises. Review of General Psychology 2, 175–220.CrossRefGoogle Scholar
  36. Noonan, M.P., Walton, M.E., Behrens, T.E.J., Sallet, J., Buckley, M.J., Rushworth, M.F.S., 2010. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc Natl Acad Sci U S A 107, 20547–20552.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Overall, J.E., Gorman, D.R., 1962. The brief psychiatric rating scale. Psychological Reports 10, 899–812.Google Scholar
  38. Pfohl, B., Blum, N., Zimmerman, M., 1997. Structured Interview for DSM-IV personality (SID-P). Washington, DC: American Psychiatric Press.Google Scholar
  39. Ragland, J.D., Laird, A.R., Ranganath, C., Blumenfeld, R.S., Gonzales, S.M., Glahn, D.C., 2009. Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry 166, 863–874.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Riceberg, J.S., Shapiro, M.L., 2012. Reward stability determines the contribution of orbitofrontal cortex to adaptive behavior. J Neurosci 32, 16402–16409.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schielzeth, H., Forstmeier, W., 2009. Conclusions beyond support: Overconfident estimates in mixed models. Behav Ecol 20, 416–420.CrossRefPubMedGoogle Scholar
  42. Sharot, T., De Martino, B., Dolan, R.J., 2009. How choice reveals and shapes expected hedonic outcome. J Neurosci 29, 3760–3765.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shiner, T., Seymour, B., Wunderlich, K., Hill, C., Bhatia, K.P., Dayan, P., Dolan, R.J., 2012. Dopamine and performance in a reinforcement learning task: Evidence from parkinson’s disease. Brain 135, 1871–1883.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Slifstein, M., Kolachana, B., Simpson, E.H., Tabares, P., Cheng, B., Duvall, M., Frankle, W.G., Weinberger, D.R., Laruelle, M., Abi-Dargham, A., 2008. Comt genotype predicts cortical-limbic d1 receptor availability measured with [11c]nnc112 and pet. Mol Psychiatry 13, 821–827.CrossRefPubMedGoogle Scholar
  45. Somlai, Z., Moustafa, A.A., Kéri, S., Myers, C.E., Gluck, M.A., 2011. General functioning predicts reward and punishment learning in schizophrenia. Schizophr Res 127, 131–136.CrossRefPubMedGoogle Scholar
  46. Staudinger, M.R., Büchel, C., 2013. How initial confirmatory experience potentiates the detrimental influence of bad advice. Neuroimage 76, 125–133.CrossRefPubMedGoogle Scholar
  47. Strauss, G.P., Frank, M.J., Waltz, J.A., Kasanova, Z., Herbener, E.S., Gold, J.M., 2011. Deficits in positive reinforcement learning and uncertainty-driven exploration are associated with distinct aspects of negative symptoms in schizophrenia. Biol Psychiatry 69, 424–431.CrossRefPubMedGoogle Scholar
  48. Tsuchida, A., Doll, B.B., Fellows, L.K., 2010. Beyond reversal: A critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. J Neurosci 30, 16868–16875.CrossRefPubMedGoogle Scholar
  49. Tunbridge, E.M., Bannerman, D.M., Sharp, T., Harrison, P.J., 2004. Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 24, 5331–5335.CrossRefPubMedGoogle Scholar
  50. Walsh, M.M., Anderson, J.R., 2011. Modulation of the feedback-related negativity by instruction and experience. Proc Natl Acad Sci U S A 108, 19048–19053.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Waltz, J.A., Frank, M.J., Robinson, B.M., Gold, J.M., 2007. Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry 62, 756–764.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Waltz, J.A., Frank, M.J., Wiecki, T.V., Gold, J.M., 2011. Altered probabilistic learning and response biases in schizophrenia: Behavioral evidence and neurocomputational modeling. Neuropsychology 25, 86–97.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Waltz, J.A., Schweitzer, J.B., Ross, T.J., Kurup, P.K., Salmeron, B.J., Rose, E.J., Gold, J.M., Stein, E.A., 2010. Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology 35, 2427–2439.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wechsler, D., 1999. Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio TX: The Psychological Corporation.Google Scholar
  55. Wechsler, D., 2001. Wechsler Test of Adult Reading (WTAR). San Antonio, TX: The Psychological Corporation.Google Scholar
  56. Weickert, T.W., Terrazas, A., Bigelow, L.B., Malley, J.D., Hyde, T., Egan, M.F., Weinberger, D.R., Goldberg, T.E., 2002. Habit and skill learning in schizophrenia: Evidence of normal striatal processing with abnormal cortical input. Learn Mem 9, 430–442.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Bradley B. Doll
    • 1
    • 2
  • James A. Waltz
    • 3
  • Jeffrey Cockburn
    • 4
  • Jaime K. Brown
    • 3
  • Michael J. Frank
    • 4
  • James M. Gold
    • 3
  1. 1.Center for Neural ScienceNew York UniversityNew YorkUSA
  2. 2.Department of PsychologyColumbia UniversityNew YorkUSA
  3. 3.Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Department of Cognitive, Linguistic, and Psychological SciencesBrown UniversityProvidenceUSA

Personalised recommendations