Cognitive, Affective, & Behavioral Neuroscience

, Volume 14, Issue 3, pp 923–938 | Cite as

Functional overlap of top-down emotion regulation and generation: An fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions

  • Benjamin Otto
  • Supriya Misra
  • Aditya Prasad
  • Kateri McRaeEmail author


One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.


Emotion regulation Emotion generation Cognitive reappraisal Transfer appropriate processing Medial prefrontal cortex Face fMRI History effects 


Author note

The authors acknowledge the generous help of Stephen Allison, Elliot Berkman, Ana Draghici, Ben Edwards, Evan Kelso, and Sean Pereira in assisting with creation of the experimental task and portions of the fMRI data analysis. In addition, we thank Gary Glover and acknowledge Grant No. NIH R01 MH058147 to James J. Gross.


  1. Aldao, A., & Nolen-Hoeksema, S. (2010). Specificity of cognitive emotion regulation strategies: A transdiagnostic examination. Behaviour Research and Therapy, 48, 974–983. doi: 10.1016/j.brat.2010.06.002 PubMedCrossRefGoogle Scholar
  2. Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., & Sobel, N. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6, 196–202. doi: 10.1038/nn1001 PubMedCrossRefGoogle Scholar
  3. Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 2883–2901.PubMedCrossRefGoogle Scholar
  4. Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49, 1195–1205. doi: 10.1016/j.cortex.2012.05.022 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Baumeister, R. F., Bratslavsky, E., Muraven, M., & Tice, D. M. (1998). Ego depletion: Is the active self a limited resource? Journal of Personality and Social Psychology, 74, 1252–1265. doi: 10.1037/0022-3514.74.5.1252 PubMedCrossRefGoogle Scholar
  6. Beck, A. T., & Dozois, D. J. A. (2011). Cognitive therapy: Current status and future directions. Annual Review of Medicine, 62, 397–409. doi: 10.1146/annurev-med-052209-100032 PubMedCrossRefGoogle Scholar
  7. Bender, S., Hellwig, S., Resch, F., & Weisbrod, M. (2007). Am I safe? The ventrolateral prefrontal cortex “detects” when an unpleasant event does not occur. NeuroImage, 38, 367–385. doi: 10.1016/j.neuroimage.2007.07.044 PubMedCrossRefGoogle Scholar
  8. Boettiger, C. A., & D’Esposito, M. (2005). Frontal networks for learning and executing arbitrary stimulus–response associations. Journal of Neuroscience, 25, 2723–2732. doi: 10.1523/JNEUROSCI.3697-04.2005 PubMedCrossRefGoogle Scholar
  9. Britton, J. C., Phan, K. L., Taylor, S. F., Welsh, R. C., Berridge, K. C., & Liberzon, I. (2006). Neural correlates of social and nonsocial emotions: An fMRI study. NeuroImage, 31, 397–409. doi: 10.1016/j.neuroimage.2005.11.027 PubMedCrossRefGoogle Scholar
  10. Butler, A. J., & James, K. H. (2011). Cross-modal versus within-modal recall: Differences in behavioral and brain responses. Behavioural Brain Research, 224, 387–396. doi: 10.1016/j.bbr.2011.06.017 PubMedGoogle Scholar
  11. Carrington, S. J., & Bailey, A. J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping, 30, 2313–2335. doi: 10.1002/hbm.20671 PubMedCrossRefGoogle Scholar
  12. Dillon, D. G., & LaBar, K. S. (2005). Startle modulation during conscious emotion regulation is arousal-dependent. Behavioral Neuroscience, 119, 1118–1124. doi: 10.1037/0735-7044.119.4.1118 PubMedCrossRefGoogle Scholar
  13. Dillon, D. G., Ritchey, M., Johnson, B. D., & LaBar, K. S. (2007). Dissociable effects of conscious emotion regulation strategies on explicit and implicit memory. Emotion, 7, 354–365. doi: 10.1037/1528-3542.7.2.354 PubMedCrossRefGoogle Scholar
  14. Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12, 467–477. doi: 10.1038/nrn3027 PubMedCrossRefGoogle Scholar
  15. Eippert, F., Veit, R., Weiskopf, N., Erb, M., Birbaumer, N., & Anders, S. (2007). Regulation of emotional responses elicited by threat-related stimuli. Human Brain Mapping, 28, 409–423. doi: 10.1002/hbm.20291 PubMedCrossRefGoogle Scholar
  16. Fletcher, P. C., Happé, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S. J., & Frith, C. D. (1995). Other minds in the brain: A functional imaging study of “theory of mind” in story comprehension. Cognition, 57, 109–128. doi: 10.1016/0010-0277(95)00692-R PubMedCrossRefGoogle Scholar
  17. Frijda, N. H. (1988). The laws of emotion. American Psychologist, 43, 349–358. doi: 10.1037/0003-066X.43.5.349 PubMedCrossRefGoogle Scholar
  18. Gilbert, S. J., Spengler, S., Simons, J. S., Steele, J. D., Lawrie, S. M., Frith, C. D., & Burgess, P. W. (2006). Functional specialization within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18, 932–948. doi: 10.1162/jocn.2006.18.6.932 PubMedCrossRefGoogle Scholar
  19. Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63, 577–586. doi: 10.1016/j.biopsych.2007.05.031 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Grodzinsky, Y., & Santi, A. (2008). The battle for Broca’s region. Trends in Cognitive Sciences, 12, 474–480. doi: 10.1016/j.tics.2008.09.001 PubMedCrossRefGoogle Scholar
  21. Gross, J. J. (1998a). Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74, 224–237. doi: 10.1037/0022-3514.74.1.224 PubMedCrossRefGoogle Scholar
  22. Gross, J. J. (1998b). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2, 271–299. doi: 10.1037/1089-2680.2.3.271 CrossRefGoogle Scholar
  23. Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39, 281–291.PubMedCrossRefGoogle Scholar
  24. Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85, 348–362.PubMedCrossRefGoogle Scholar
  25. Hayes, J. P., Morey, R. A., Petty, C. M., Seth, S., Smoski, M. J., McCarthy, G., & LaBar, K. S. (2010). Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding. Frontiers in Human Neuroscience, 4, 230. doi: 10.3389/fnhum.2010.00230 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Higgins, E. T. (1998). Promotion and prevention: Regulatory focus as a motivational principle. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 30, pp. 1–46). New York, NY: Academic Press. doi: 10.1016/S0065-2601(08)60381-0 Google Scholar
  27. Hornak, J., O’Doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R., & Polkey, C. E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16, 463–478. doi: 10.1162/089892904322926791 PubMedCrossRefGoogle Scholar
  28. Hutcherson, C. A., Goldin, P. R., Ochsner, K. N., Gabrieli, J. D., Barrett, L. F., & Gross, J. J. (2005). Attention and emotion: Does rating emotion alter neural responses to amusing and sad films? NeuroImage, 27, 656–668. doi: 10.1016/j.neuroimage.2005.04.028 PubMedCrossRefGoogle Scholar
  29. Iida, S., Nakao, T., & Ohira, H. (2012). Prior cognitive activity implicitly modulates subsequent emotional responses to subliminally presented emotional stimuli. Cognitive, Affective, & Behavioral Neuroscience, 12, 337–345. doi: 10.3758/s13415-012-0084-z CrossRefGoogle Scholar
  30. Jackson, D. C., Malmstadt, J. R., Larson, C. L., & Davidson, R. J. (2000). Suppression and enhancement of emotional responses to unpleasant pictures. Psychophysiology, 37, 515–522.PubMedCrossRefGoogle Scholar
  31. Johnson, D. R. (2009). Emotional attention set-shifting and its relationship to anxiety and emotion regulation. Emotion, 9, 681–690. doi: 10.1037/a0017095 PubMedCrossRefGoogle Scholar
  32. Kalisch, R. (2009). The functional neuroanatomy of reappraisal: Time matters. Neuroscience & Biobehavioral Reviews, 33, 1215–1226. doi: 10.1016/j.neubiorev.2009.06.003 CrossRefGoogle Scholar
  33. Kanske, P., Heissler, J., Schönfelder, S., Bongers, A., & Wessa, M. (2011). How to regulate emotion? Neural networks for reappraisal and distraction. Cerebral Cortex, 21, 1379–1388. doi: 10.1093/cercor/bhq216 PubMedCrossRefGoogle Scholar
  34. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794. doi: 10.1162/08989290260138672 PubMedCrossRefGoogle Scholar
  35. Kim, S. H., & Hamann, S. (2007). Neural correlates of positive and negative emotion regulation. Journal of Cognitive Neuroscience, 19, 776–798. doi: 10.1162/jocn.2007.19.5.776 PubMedCrossRefGoogle Scholar
  36. Kim, H., Somerville, L. H., Johnstone, T., Alexander, A. L., & Whalen, P. J. (2003). Inverse amygdala and medial prefrontal cortex responses to surprised faces. NeuroReport, 14, 2317–2322. doi: 10.1097/00001756-200312190-00006 PubMedCrossRefGoogle Scholar
  37. Kim, H., Somerville, L. H., Johnstone, T., Polis, S., Alexander, A. L., Shin, L. M., & Whalen, P. J. (2004). Contextual modulation of amygdala responsivity to surprised faces. Journal of Cognitive Neuroscience, 16, 1730–1745. doi: 10.1162/0898929042947865 PubMedCrossRefGoogle Scholar
  38. Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., & Ochsner, K. N. (2010). Prefrontal–striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences, 107, 14811–14816. doi: 10.1073/pnas.1007779107 CrossRefGoogle Scholar
  39. Kring, A. M., & Gordon, A. H. (1998). Sex differences in emotion: Expression, experience, and physiology. Journal of Personality and Social Psychology, 74, 686–703. doi: 10.1037/0022-3514.74.3.686 PubMedCrossRefGoogle Scholar
  40. Lazarus, R. S., & Alfert, E. (1964). Short-circuiting of threat by experimentally altering cognitive appraisal. Journal of Abnormal and Social Psychology, 69, 195–205. doi: 10.1037/h0044635 CrossRefGoogle Scholar
  41. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184. doi: 10.1146/annurev.neuro.23.1.155 PubMedCrossRefGoogle Scholar
  42. Luo, Q., Holroyd, T., Jones, M., Hendler, T., & Blair, J. (2007). Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. NeuroImage, 34, 839–847. doi: 10.1016/j.neuroimage.2006.09.023 PubMedCentralPubMedCrossRefGoogle Scholar
  43. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838. doi: 10.1126/science.288.5472.1835 PubMedCrossRefGoogle Scholar
  44. Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2003). Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping, 18, 30–41. doi: 10.1002/hbm.10075 PubMedCrossRefGoogle Scholar
  45. Mayer, J. S., Bittner, R. A., Nikolić, D., Bledowski, C., Goebel, R., & Linden, D. E. J. (2007). Common neural substrates for visual working memory and attention. NeuroImage, 36, 441–453. doi: 10.1016/j.neuroimage.2007.03.007 PubMedCrossRefGoogle Scholar
  46. McRae, K., Hughes, B., Chopra, S., Gabrieli, J. D. E., Gross, J. J., & Ochsner, K. N. (2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22, 248–262. doi: 10.1162/jocn.2009.21243 PubMedCrossRefGoogle Scholar
  47. McRae, K., Jacobs, S. E., Ray, R. D., John, O. P., & Gross, J. J. (2012). Individual differences in reappraisal ability: Links to reappraisal frequency, well-being, and cognitive control. Journal of Research in Personality, 46, 2–7. doi: 10.1016/j.jrp.2011.10.003 CrossRefGoogle Scholar
  48. McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2011). Bottom-up and top-down emotion generation: Implications for emotion regulation. Social Cognitive and Affective Neuroscience, 7, 253–262. doi: 10.1093/scan/nsq103 PubMedCentralPubMedCrossRefGoogle Scholar
  49. McRae, K., Ochsner, K. N., Mauss, I. B., Gabrieli, J. D. E., & Gross, J. J. (2008). Gender differences in emotion regulation: An fMRI study of cognitive reappraisal. Group Processes & Intergroup Relations, 11, 143–162. doi: 10.1177/1368430207088035 CrossRefGoogle Scholar
  50. Mechias, M.-L., Etkin, A., & Kalisch, R. (2010). A meta-analysis of instructed fear studies: Implications for conscious appraisal of threat. NeuroImage, 49, 1760–1768. doi: 10.1016/j.neuroimage.2009.09.040 PubMedCrossRefGoogle Scholar
  51. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi: 10.1146/annurev.neuro.24.1.167 PubMedCrossRefGoogle Scholar
  52. Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005). The link between social cognition and self-referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 17, 1306–1315. doi: 10.1162/0898929055002418 PubMedCrossRefGoogle Scholar
  53. Mühlberger, A., Neumann, R., Lozo, L., Müller, M., & Hettinger, M. (2012). Bottom-up and top-down influences of beliefs on emotional responses: Fear of heights in a virtual environment. Studies in Health Technology and Informatics, 181, 133–137.PubMedGoogle Scholar
  54. Narumoto, J., Okada, T., Sadato, N., Fukui, K., & Yonekura, Y. (2001). Attention to emotion modulates fMRI activity in human right superior temporal sulcus. Cognitive Brain Research, 12, 225–231.PubMedCrossRefGoogle Scholar
  55. Nezlek, J. B., & Kuppens, P. (2008). Regulating positive and negative emotions in daily life. Journal of Personality, 76, 561–580. doi: 10.1111/j.1467-6494.2008.00496.x PubMedCrossRefGoogle Scholar
  56. Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D. E., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage, 23, 483–499. doi: 10.1016/j.neuroimage.2004.06.030 PubMedCrossRefGoogle Scholar
  57. Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J., & Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20, 1322–1331. doi: 10.1111/j.1467-9280.2009.02459.x PubMedCentralPubMedCrossRefGoogle Scholar
  58. Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24. doi: 10.1111/j.1749-6632.2012.06751.x PubMedCrossRefGoogle Scholar
  59. Öhman, A., Flykt, A., & Lundqvist, D. (2000). Unconscious emotion: Evolutionary perspectives, psychophysiological data and neuropsychological mechanisms. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 296–327). New York, NY: Oxford University Press.Google Scholar
  60. Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483–522. doi: 10.1037/0033-295X.108.3.483 PubMedCrossRefGoogle Scholar
  61. Öhman, A., & Soares, J. J. F. (1998). Emotional conditioning to masked stimuli: Expectancies for aversive outcomes following nonrecognized fear-relevant stimuli. Journal of Experimental Psychology. General, 127, 69–82. doi: 10.1037/0096-3445.127.1.69 PubMedCrossRefGoogle Scholar
  62. Olsson, A., Nearing, K. I., & Phelps, E. A. (2007). Learning fears by observing others: The neural systems of social fear transmission. Social Cognitive and Affective Neuroscience, 2, 3–11. doi: 10.1093/scan/nsm005 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Olsson, A., & Ochsner, K. N. (2008). The role of social cognition in emotion. Trends in Cognitive Sciences, 12, 65–71. doi: 10.1016/j.tics.2007.11.010 PubMedCrossRefGoogle Scholar
  64. Pessoa, L. (2005). To what extent are emotional visual stimuli processed without attention and awareness? Current Opinion in Neurobiology, 15, 188–196. doi: 10.1016/j.conb.2005.03.002 PubMedCrossRefGoogle Scholar
  65. Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14, 198–202. doi: 10.1016/j.conb.2004.03.015 PubMedCrossRefGoogle Scholar
  66. Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175–187. doi: 10.1016/j.neuron.2005.09.025 PubMedCrossRefGoogle Scholar
  67. Phelps, E. A., O’Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441. doi: 10.1038/86110 PubMedCrossRefGoogle Scholar
  68. Preston, A. R., Thomason, M. E., Ochsner, K. N., Cooper, J. C., & Glover, G. H. (2004). Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T. NeuroImage, 21, 291–301. doi: 10.1016/j.neuroimage.2003.09.017 PubMedCrossRefGoogle Scholar
  69. Ray, R. D., McRae, K., Ochsner, K. N., & Gross, J. J. (2010). Cognitive reappraisal of negative affect: Converging evidence from EMG and self-report. Emotion, 10, 587–592. doi: 10.1037/a0019015 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Richards, J. M., & Gross, J. J. (2000). Emotion regulation and memory: The cognitive costs of keeping one’s cool. Journal of Personality and Social Psychology, 79, 410–424.PubMedCrossRefGoogle Scholar
  71. Roediger, H. L., III, Weldon, M. S., & Challis, B. H. (1989). Explaining dissociations between implicit and explicit measures of retention: A processing account. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honor of Endel Tulving (pp. 3–41). Hillsdale, NJ: Erlbaum.Google Scholar
  72. Rugg, M. D., Johnson, J. D., Park, H., & Uncapher, M. R. (2008). Encoding–retrieval overlap in human episodic memory: A functional neuroimaging perspective. Essence of memory (Vol. 169, pp. 339–352). Amsterdam, The Netherlands: Elsevier. doi: 10.1016/S0079-6123(07)00021-0
  73. Scherer, K. R., Schorr, A., & Johnstone, T. (Eds.). (2001). Appraisal processes in emotion: Theory, methods, research (Series in Affective Science, Vol. xiv). New York, NY: Oxford University Press.Google Scholar
  74. Seligman, M. E. P. (1971). Phobias and preparedness. Behavior Therapy, 2, 307–320. doi: 10.1016/S0005-7894(71)80064-3 CrossRefGoogle Scholar
  75. Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: Review of literature and implications for future research. Neuroscience & Biobehavioral Reviews, 30, 855–863. doi: 10.1016/j.neubiorev.2006.06.011 CrossRefGoogle Scholar
  76. Spezio, M. L., Adolphs, R., Hurley, R. S. E., & Piven, J. (2007). Analysis of face gaze in autism using “Bubbles. Neuropsychologia, 45, 144–151. doi: 10.1016/j.neuropsychologia.2006.04.027 PubMedCrossRefGoogle Scholar
  77. Teasdale, J. D., Howard, R. J., Cox, S. G., Ha, Y., Brammer, M. J., Williams, S. C. R., & Checkley, S. A. (1999). Functional MRI study of the cognitive generation of affect. American Journal of Psychiatry, 156, 209–215.PubMedGoogle Scholar
  78. Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., & Marcus, D. J. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168, 242–249. doi: 10.1016/j.psychres.2008.05.006 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Touryan, S. R., Johnson, M. K., Mitchell, K. J., Farb, N., Cunningham, W. A., & Raye, C. L. (2007). The influence of self-regulatory focus on encoding of, and memory for, emotional words. Social Neuroscience, 2, 14–27. doi: 10.1080/17470910601046829 PubMedCrossRefGoogle Scholar
  80. Urry, H. L., van Reekum, C. M., Johnstone, T., & Davidson, R. J. (2009). Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion. NeuroImage, 47, 852–863. doi: 10.1016/j.neuroimage.2009.05.069 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Vaidya, C. J., Zhao, M., Desmond, J. E., & Gabrieli, J. D. E. (2002). Evidence for cortical encoding specificity in episodic memory: Memory-induced re-activation of picture processing areas. Neuropsychologia, 40, 2136–2143. doi: 10.1016/S0028-3932(02)00053-2 PubMedCrossRefGoogle Scholar
  82. Visser, M., Jefferies, E., & Lambon Ralph, M. A. (2010). Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22, 1083–1094. doi: 10.1162/jocn.2009.21309 PubMedCrossRefGoogle Scholar
  83. Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624–631. doi: 10.1038/nn1057 PubMedCrossRefGoogle Scholar
  84. Walter, H., Von Kalckreuth, A., Schardt, D., Stephan, A., Goschke, T., & Erk, S. (2009). The temporal dynamics of voluntary emotion regulation. PLoS ONE, 4, e6726. doi: 10.1371/journal.pone.0006726 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Whalen, P. J., Kagan, J., Cook, R. G., Davis, F. C., Kim, H., Polis, S., & Johnstone, T. (2004). Human amygdala responsivity to masked fearful eye whites. Science, 306, 2061. doi: 10.1126/science.1103617 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Benjamin Otto
    • 1
  • Supriya Misra
    • 2
  • Aditya Prasad
    • 2
  • Kateri McRae
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of DenverDenverUSA
  2. 2.Department of PsychologyStanford UniversityStanfordUSA

Personalised recommendations