Frontotemporal neural systems supporting semantic processing in Alzheimer’s disease

  • Jonathan E. Peelle
  • John Powers
  • Philip A. Cook
  • Edward E. Smith
  • Murray Grossman


We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer’s disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual–perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.


Semantics Embodied cognition Prefrontal cortex 


Author Note

We are grateful to Keerthi Chandrasekaran for assistance with data collection and processing. We thank the radiographers at the Hospital of the University of Pennsylvania for their assistance with data collection, and the volunteers for their participation. The research reported in this publication was supported in part by the National Institutes on Aging and Neurological Disorders and Stroke of the National Institutes of Health under Award Nos. R01AG038490, R01AG015116, R01AG017586, R01AG032953, R01NS044266, and R01NS053488. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. Alexander, D. C., Pierpaoli, C., Basser, P. J., & Gee, J. C. (2001). Partial transformations of diffusion tensor magnetic resonance images. IEEE Transactions on Medical Imaging, 20, 1131–1139.PubMedCrossRefGoogle Scholar
  2. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851. doi: 10.1016/j.neuroimage.2005.02.018 PubMedCrossRefGoogle Scholar
  3. Bak, T. H., & Chandran, S. (2012). What wires together dies together: Verbs, actions and neurodegeneration in motor neuron disease. Cortex, 48, 936–944.PubMedCrossRefGoogle Scholar
  4. Bak, T. H., O’Donovan, D. G., Xuereb, J. H., Boniface, S., & Hodges, J. R. (2001). Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia syndrome. Brain, 124, 103–120.PubMedCrossRefGoogle Scholar
  5. Barsalou, L. W., Simmons, W. K., Barbey, A., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7, 84–91. doi: 10.1016/S1364-6613(02)00029-3 PubMedCrossRefGoogle Scholar
  6. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527–536.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796. doi: 10.1093/cercor/bhp055 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bonner, M. F., & Grossman, M. (2012). Gray matter density of auditory association cortex relates to knowledge of sound concepts in primary progressive aphasia. Journal of Neuroscience, 32, 7986–7991.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. NeuroImage, 71, 175–186.PubMedCrossRefGoogle Scholar
  10. Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage, 44, 62–70. doi: 10.1016/j.neuroimage.2008.05.021 PubMedCrossRefGoogle Scholar
  11. Cook, P. A., Bai, Y., Nedjati-Gilani, S., Seunarine, K. K., Hall, M. G., Parker, G. J., & Alexander, D. C. (2006). Camino: Open-source diffusion-MRI reconstruction and processing. Toronto: Paper presented at the 14th Scientific Meting and Exhibition of the International Society for Magnetic Resonance in Medicine.Google Scholar
  12. Devlin, J. T., Matthews, P. M., & Rushworth, M. F. S. (2003). Semantic processing in the left inferior prefrontal cotex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 15, 71–84.PubMedCrossRefGoogle Scholar
  13. Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172–179.PubMedCrossRefGoogle Scholar
  14. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. doi: 10.1016/0022-3956(75)90026-6 PubMedCrossRefGoogle Scholar
  15. Gage, N., & Hickok, G. (2005). Multiregional cell assemblies, temporal binding and the representation of conceptual knowledge in cortex: A modern theory by a “classical” neurologist, Carl Wernicke. Cortex, 41, 823–832.PubMedCrossRefGoogle Scholar
  16. Garrard, P., Lambon Ralph, M. A., Watson, P. C., Powis, J., Patterson, K., & Hodges, J. R. (2001). Longitudinal profiles of semantic impairment for living and nonliving concepts in dementia of Alzheimer’s type. Journal of Cognitive Neuroscience, 13, 892–909.PubMedCrossRefGoogle Scholar
  17. Gonnerman, L. M., Andersen, E. S., Devlin, J. T., Kempler, D., & Seidenberg, M. S. (1997). Double dissociation of semantic categories in Alzheimer’s disease. Brain and Language, 57, 254–279.PubMedCrossRefGoogle Scholar
  18. Gough, P. M., Nobre, A. C., & Devlin, J. T. (2005). Dissociating linguistic processes in the left inferior frontal cotex with transcranial magnetic stimulation. Journal of Neuroscience, 25, 8010–8016.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Grossman, M., Payer, F., Onishi, K., White-Devine, T., Morrison, D., D’Esposito, M., & Alavi, A. (1997). Constraints on the cerebral basis for semantic processing from neuroimaging studies of Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 63, 152–158.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Grossman, M., Payer, F., Onishi, K., D’Esposito, M., Morrison, D., Sadek, A., & Alavi, A. (1998). Language comprehension and regional cerebral defects in frontotemporal degeneration and Alzheimer’s disease. Neurology, 50, 157–163.PubMedCrossRefGoogle Scholar
  21. Grossman, M., Smith, E. E., Koenig, P., Glosser, G., DeVita, C., Moore, P., & McMillan, C. (2002). The neural basis for categorization in semantic memory. NeuroImage, 17, 1549–1561.PubMedCrossRefGoogle Scholar
  22. Grossman, M., Koenig, P., Glosser, G., DeVita, C., Moore, P., Rhee, J., & Gee, J. (2003). Neural basis for semantic memory difficulty in Alzheiemer’s disease: An fMRI study. Brain, 126, 292–311.PubMedCrossRefGoogle Scholar
  23. Grossman, M., Anderson, C., Khan, A., Avants, B., Elman, L., & McCluskey, L. (2008). Impaired action knowledge in amyotrophic lateral sclerosis. Neurology, 71, 1396–1401.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Grossman, M., Peelle, J. E., Smith, E. E., McMillan, C. T., Cook, P. A., Powers, J., & Burkholder, L. (2013). Category-specific semantic memory: Converging evidence from BOLD fMRI and Alzheimer’s disease. NeuroImage, 68, 263–274.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hodges, J. R., & Patterson, K. (1995). Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 33, 441–459.PubMedCrossRefGoogle Scholar
  26. Hodges, J. R., Salmon, D. P., & Butters, N. (1992). Semantic memory impairment in Alzheimer’s disease: Failure of access or degraded knowledge? Neuropsychologia, 30, 301–314.PubMedCrossRefGoogle Scholar
  27. Howard, D., & Patterson, K. (1992). Pyramids and palm trees: A test of semantic access form pictures and words. Bury St Edmunds: Thames Valley.Google Scholar
  28. Jefferies, E., Patterson, K., & Lambon Ralph, M. A. (2008). Deficits of knowledge versus executive control in semantic cognition: Insights from cued naming. Neuropsychologia, 46, 649–658.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Philadelphia: Lea & Febiger.Google Scholar
  30. Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, curent evidence and future directions. Cortex, 48, 805–825. doi: 10.1016/j.cortex.2011.04.006 PubMedCrossRefGoogle Scholar
  31. Koenig, P., & Grossman, M. (2007). Process and content in semantic memory. In J. Hart Jr. & M. A. Kraut (Eds.), Neural basis of semantic memory (pp. 247–264). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Koenig, P., Smith, E. E., Glosser, G., DeVita, C., Moore, P., McMillan, C., & Grossman, M. (2005). The neural basis for novel semantic categorization. NeuroImage, 24, 369–383.PubMedCrossRefGoogle Scholar
  33. Koenig, P., Smith, E. E., & Grossman, M. (2010). Categorization of novel tools by patients with Alzheimer’s disease: Category-specific content and process. Neuropsychologia, 48, 1877–1885.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lambon Ralph, M. A., Powell, J., Howard, D., Whitworth, A. B., Garrard, P., & Hodges, J. R. (2001). Semantic memory is impaired in both dementia with Lewy bodies and demantia of Alzheimer’s type: a comparative neuropsychological study and literature review. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 149–156.PubMedCrossRefGoogle Scholar
  35. Libon, D. J., Rascovsky, K., Powers, J., Irwin, D. J., Boller, A., Weinberg, D., & Grossman, M. (2013). Comparative semantic profiles in semantic dementia and Alzheimer’s disease. Brain, 136, 2497–2509.PubMedCrossRefGoogle Scholar
  36. Martin, A. (2007). The representation of object concepts in the brain. Annual Reviews of Psychology, 58, 25–45.CrossRefGoogle Scholar
  37. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7, 263–269.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987. doi: 10.1038/nrn2277 PubMedCrossRefGoogle Scholar
  39. Peelle, J. E., Troiani, V., & Grossman, M. (2009). Interaction between process and content in semantic memory: An fMRI study of noun feature knowledge. Neuropsychologia, 47, 995–1003. doi: 10.1016/j.neuropsychologia.2008.10.027 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Peelle, J. E., Chandrasekaran, K., Powers, J., Smith, E. E., & Grossman, M. (2013). Age-related vulnerability in the neural systems supporting semantic processing. Frontiers in Aging Neuroscience, 5, 46.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Reilly, J., Rodriguez, A. D., Peelle, J. E., & Grossman, M. (2011). Frontal lobe damage impairs process and content in semantic memory: Evidence from category specific effects in progressive nonfluent aphasia. Cortex, 47, 645–658.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Rodriguez, A. D., McCabe, M. L., Nocera, J. R., & Reilly, J. (2012). Concurrent word generation and motor performance: Further evidence for language–motor interaction. PLoS ONE, 7, e37094. doi: 10.1371/journal.pone.0037094 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Saffran, E., Schwartz, M. F., Umiltà, C., & Moscovitch, M. (1994). Of cabbages and things: Semantic memory from a neuropsychological perspective—A tutorial review. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 507–536). Cambridge: MIT Press.Google Scholar
  44. Salvador, R., Peña, A., Menon, D. K., Carpenter, T. A., Pickard, J. D., & Bullmore, E. T. (2005). Formal characterization and extension of the linearized diffusion tensor model. Human Brain Mapping, 24, 144–155.PubMedCrossRefGoogle Scholar
  45. Simmons, W. K., Martin, A., & Barsalou, L. W. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15, 1602–1608.PubMedCrossRefGoogle Scholar
  46. Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45, 2802–2810. doi: 10.1016/j.neuropsychologia.2007.05.002 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. doi: 10.1126/science.283.5408.1657 PubMedCrossRefGoogle Scholar
  48. Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44, 83–98.PubMedCrossRefGoogle Scholar
  49. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94, 14792–14797.CrossRefGoogle Scholar
  50. Wagner, A. D., Maril, A., Bjork, R. A., & Schacter, D. L. (2001). Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. NeuroImage, 14, 1337–1347.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Jonathan E. Peelle
    • 1
    • 2
  • John Powers
    • 1
  • Philip A. Cook
    • 3
  • Edward E. Smith
    • 4
  • Murray Grossman
    • 1
    • 5
  1. 1.Penn Frontotemporal Degeneration Center and Department of NeurologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of OtolaryngologyWashington University in St. LouisSt. LouisUSA
  3. 3.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of PsychologyColumbia UniversityNew YorkUSA
  5. 5.Department of Neurology, 2 GibsonUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations