An attentional-adaptation account of spatial negative priming: Evidence from event-related potentials

  • Xiaonan L. Liu
  • Matthew M. Walsh
  • Lynne M. Reder


Negative priming (NP) refers to a slower response to a target stimulus if it has been previously ignored. To examine theoretical accounts of spatial NP, we recorded behavioral measures and event-related potentials (ERPs) in a target localization task. A target and distractor briefly appeared, and the participant pressed a key corresponding to the target’s location. The probability of the distractor appearing in each of four locations varied, whereas the target appeared with equal probabilities in all locations. We found that response times (RTs) were fastest when the prime distractor appeared in its most probable (frequent) location and when the prime target appeared in the location that never contained a distractor. Moreover, NP effects varied as a function of location: They were smallest when targets followed distractors in the frequent distractor location—a finding not predicted by episodic-retrieval or suppression accounts of NP. The ERP results showed that the P2, an ERP component associated with attentional orientation, was smaller in prime displays when the distractor appeared in its frequent location. Moreover, no differences were apparent between negative-prime and control trials in the N2, which is associated with suppression processes, nor in the P3, which is associated with episodic retrieval processes. These results indicate that the spatial NP effect is caused by both short- and long-term adaptation in preferences based on the history of inspecting unsuccessful locations. This article is dedicated to the memory of Edward E. Smith, and we indicate how this study was inspired by his research career.


Negative priming Attentional adaptation ERPs P2 N2 P3 


Author note

This work was supported by the National Institute of Mental Health Grant Nos. 5R01MH052808 and T32MH019983. We thank J. T. Bates for programming assistance, K. Halfmann and I. Cutler for help with data collection, and A. Manelis and C. Paynter for comments on previous drafts of the manuscript.


  1. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. doi: 10.1016/S1364-6613(00)01593-X PubMedCrossRefGoogle Scholar
  2. Baker, C. I., Olson, C. R., & Behrmann, M. (2004). Role of attention and perceptual grouping in visual statistical learning. Psychological Science, 15, 460–466. doi: 10.1111/j.0956-7976.2004.00702.x PubMedCrossRefGoogle Scholar
  3. Banks, W. P., Roberts, D., & Ciranni, M. (1995). Negative priming in auditory attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 1354–1361.Google Scholar
  4. Buchner, A., & Naumann, E. (2006). Brain-electrical correlates of negative priming. Journal of Psychophysiology, 20, 157–159.CrossRefGoogle Scholar
  5. Christie, J., & Klein, R. M. (2001). Negative priming for spatial location? Canadian Journal of Experimental Psychology, 55, 24–38. doi: 10.1037/h0087350 PubMedCrossRefGoogle Scholar
  6. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. doi: 10.1037/0033-2909.112.1.155 PubMedCrossRefGoogle Scholar
  7. Davis, H. (1964). Enhancement of evoked cortical potentials in humans related to task requiring decision. Science, 145, 182–183.PubMedCrossRefGoogle Scholar
  8. Donchin, E., & Coles, M. G. H. (1988). Is the P3 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–374.CrossRefGoogle Scholar
  9. Driver, J., Mcleod, P., & Dienes, Z. (1992). Motion coherence and conjunction search—Implications for guided search theory. Perception & Psychophysics, 51, 79–85.CrossRefGoogle Scholar
  10. Druker, M., & Anderson, B. (2010). Spatial probability aids visual stimulus discrimination. Frontiers in Human Neuroscience, 4, 63. doi: 10.3389/fnhum.2010.00063 PubMedCentralPubMedGoogle Scholar
  11. Eimer, M. (1993). Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biological Psychology, 35, 123–138.PubMedCrossRefGoogle Scholar
  12. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. doi: 10.3758/BF03203267 CrossRefGoogle Scholar
  13. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. doi: 10.3758/BRM.41.4.1149 PubMedCrossRefGoogle Scholar
  14. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. doi: 10.3758/BF03193146 PubMedCrossRefGoogle Scholar
  15. Fox, E. (1995). Negative priming from ignored distractors in visual selection—A review. Psychonomic Bulletin & Review, 2, 145–173.CrossRefGoogle Scholar
  16. Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13, 520–525.PubMedCrossRefGoogle Scholar
  17. Gibbons, H. (2006). An event-related potential investigation of varieties of negative priming. Journal of Psychophysiology, 20, 170–185.CrossRefGoogle Scholar
  18. Gibbons, H. (2009). Functional brain-electrical correlates of negative priming in the flanker task: Evidence for episodic retrieval. Psychophysiology, 46, 807–817.PubMedCrossRefGoogle Scholar
  19. Gibbons, H., & Frings, C. (2010). Flanker negative priming from spatially unpredictable primes: An ERP study. International Journal of Psychophysiology, 75, 339–348.PubMedCrossRefGoogle Scholar
  20. Gibbons, H., Rammsayer, T. H., & Stahl, J. (2006). Multiple sources of positive-and negative-priming effects: An event-related potential study. Memory & Cognition, 34, 172–186.CrossRefGoogle Scholar
  21. Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in human brain. Science, 182, 177–180.PubMedCrossRefGoogle Scholar
  22. Hoffmann, J., & Kunde, W. (1999). Location-specific target expectancies in visual search. Journal of Experimental Psychology: Human Perception and Performance, 25, 1127–1141.Google Scholar
  23. Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 53–112). San Diego: Academic Press.Google Scholar
  24. Houghton, G., Tipper, S. P., Weaver, B., & Shore, D. I. (1996). Inhibition and interference in selective attention: Some tests of a neural network model. Visual Cognition, 3, 119–164.CrossRefGoogle Scholar
  25. Luck, S. J., & Hillyard, S. A. (1990). Electrophysiological evidence for parallel and serial processing during visual-search. Perception & Psychophysics, 48, 603–617.CrossRefGoogle Scholar
  26. May, C. P., Kane, M. J., & Hasher, L. (1995). Determinants of negative priming. Psychological Bulletin, 118, 35–54.PubMedCrossRefGoogle Scholar
  27. Mayr, S. (2003). ERP correlates of auditory negative priming. Cognition, 90, B11–B21.PubMedCrossRefGoogle Scholar
  28. Mayr, S., & Buchner, A. (2006). Evidence for episodic retrieval of inadequate prime responses in auditory negative priming. Journal of Experimental Psychology: Human Perception and Performance, 32, 932–943. doi: 10.1037/0096-1523.32.4.932 PubMedGoogle Scholar
  29. Milliken, B., Tipper, S. P., Houghton, G., & Lupiáñez, J. (2000). Attending, ignoring, and repetition: On the relation between negative priming and inhibition of return. Perception & Psychophysics, 62, 1280–1296. doi: 10.3758/BF03212130 CrossRefGoogle Scholar
  30. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound—A review and an analysis of the component structure. Psychophysiology, 24, 375–425.PubMedCrossRefGoogle Scholar
  31. Neill, W. T. (1997). Episodic retrieval in negative priming and repetition priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1291–1305. doi: 10.1037/0278-7393.23.6.1291 Google Scholar
  32. Neill, W. T., & Valdes, L. A. (1992). Persistence of negative priming: Steady state or decay? Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 565–576. doi: 10.1037/0278-7393.18.3.565 Google Scholar
  33. Neill, W. T., & Valdes, L. A. (1996). Facilitatory and inhibitory aspects of attention. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 77–106). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  34. Neill, W. T., Valdes, L. A., Terry, K. M., & Gorfein, D. S. (1992). Persistence of negative priming: 2. Evidence for episodic trace retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 993–1000.PubMedGoogle Scholar
  35. Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3, 17–26. doi: 10.3758/CABN.3.1.17 CrossRefGoogle Scholar
  36. Ofek, E., & Pratt, H. (2004). Ear advantage and attention: An ERP study of auditory cued attention. Hearing Research, 189, 107–118.PubMedCrossRefGoogle Scholar
  37. Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: Identity mismatching, not distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20, 613–623. doi: 10.1037/0096-1523.20.3.613 PubMedGoogle Scholar
  38. Polk, T., Drake, R., Jonides, J., Smith, M., & Smith, E. E. (2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28, 13786–13792.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–556). Hillsdale: Erlbaum.Google Scholar
  40. Posner, M. I., & Rothbart, M. K. (1998). Attention, self-regulation and consciousness. Philosophical Transactions of the Royal Society B, 353, 1915–1927.CrossRefGoogle Scholar
  41. Postle, B. R., Awh, E., Jonides, J., Smith, E. E., & D’Esposito, M. (2004). The where and how of attention-based rehearsal in spatial working memory. Cognitive Brain Research, 20, 194–205. doi: 10.1016/j.cogbrainres.2004.02.008 PubMedCrossRefGoogle Scholar
  42. Potts, G. F. (2004). An ERP index of task relevance evaluation of visual stimuli. Brain and Cognition, 56, 5–13.PubMedCrossRefGoogle Scholar
  43. Potts, G. F., Martin, L. E., Burton, P., & Montague, P. R. (2006). When things are better or worse than expected: the medial frontal cortex and the allocation of processing resources. Journal of Cognitive Neuroscience, 18, 1112–1119.PubMedCrossRefGoogle Scholar
  44. Reder, L. M., & Weber, K. H. (1997, November). Spatial habituation and expectancy effects in a negative priming paradigm. Paper presented at the annual meeting of the Psychonomic Society, Philadelphia, PAGoogle Scholar
  45. Reder, L. M., Weber, K., Shang, J., & Vanyukov, P. M. (2003). The adaptive character of the attentional system: Statistical sensitivity in a target localization task. Journal of Experimental Psychology: Human Perception and Performance, 29, 631–649.PubMedCentralPubMedGoogle Scholar
  46. Ruge, H., & Naumann, E. (2006). Brain-electrical correlates of negative location priming under sustained and transient attentional context conditions. Journal of Psychophysiology, 20, 160–169.CrossRefGoogle Scholar
  47. Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artefacts, applied to the P300 ERP. Psychophysiology, 23, 695–703. doi: 10.1111/j.1469-8986.1986.tb00696.x PubMedCrossRefGoogle Scholar
  48. Smith, E. E. (1968). Choice reaction time: An analysis of the major theoretical positions. Psychological Bulletin, 69, 77–110. doi: 10.1037/h0020189 PubMedCrossRefGoogle Scholar
  49. Smith, E. E., Haviland, S. E., Reder, L. M., Brownell, H., & Adams, N. (1976). When preparation fails: Disruptive effects of prior information on perceptual recognition. Journal of Experimental Psychology: Human Perception and Performance, 2, 151–161. doi: 10.1037/0096-1523.2.2.151 PubMedGoogle Scholar
  50. Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences, 95, 12061–12068.CrossRefGoogle Scholar
  51. Snyder, J. J., & Kingstone, A. (2000). Inhibition of return and visual search: How many separate loci are inhibited? Perception & Psychophysics, 62, 452–458. doi: 10.3758/BF03212097 CrossRefGoogle Scholar
  52. Stahl, J., & Gibbons, H. (2007). Event-related brain potentials support episodic-retrieval explanations of flanker negative priming. Experimental Brain Research, 181, 595–606.PubMedCrossRefGoogle Scholar
  53. Tian, Y., Klein, R. M., Satel, J., Xu, P., & Yao, D. (2011). Electrophysiological explorations of the cause and effect of onhibition of return in a cue–target paradigm. Brain Topography, 24, 164–182.PubMedCrossRefGoogle Scholar
  54. Tipper, S. P. (1985). The negative priming effect—Inhibitory priming by ignored objects. Quarterly Journal of Experimental Psychology, 37A, 571–590.CrossRefGoogle Scholar
  55. Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. Quarterly Journal of Experimental Psychology, 54A, 321–343.CrossRefGoogle Scholar
  56. Tipper, S. P., Brehaut, J. C., & Driver, J. (1990). Selection of moving and static objects for the control of spatially directed action. Journal of Experimental Psychology: Human Perception and Performance, 16, 492–504. doi: 10.1037/0096-1523.16.3.492 PubMedGoogle Scholar
  57. Tipper, S. P., & Cranston, M. (1985). Selective attention and priming: Inhibitory and facilitatory effects of ignored primes. Quarterly Journal of Experimental Psychology, 37A, 591–611. doi: 10.1080/14640748508400921 CrossRefGoogle Scholar
  58. Tipper, S. P., Driver, J., & Weaver, B. (1991). Object-centred inhibition of return of visual attention. Quarterly Journal of Experimental Psychology, 43A, 289–298. doi: 10.1080/14640749108400971 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Xiaonan L. Liu
    • 1
    • 2
  • Matthew M. Walsh
    • 1
    • 2
  • Lynne M. Reder
    • 1
    • 2
    • 3
  1. 1.Department of PsychologyCarnegie Mellon UniversityPittsburghUSA
  2. 2.Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of PsychologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations