Neuroticism and extraversion are associated with amygdala resting-state functional connectivity

  • Moji Aghajani
  • Ilya M. Veer
  • Marie-José van Tol
  • André Aleman
  • Mark A. van Buchem
  • Dick J. Veltman
  • Serge A. R. B. Rombouts
  • Nic J. van der Wee


The personality traits neuroticism and extraversion are differentially related to socioemotional functioning and susceptibility to affective disorders. However, the neurobiology underlying this differential relationship is still poorly understood. This discrepancy could perhaps best be studied by adopting a brain connectivity approach. Whereas the amygdala has repeatedly been linked to neuroticism and extraversion, no study has yet focused on the intrinsic functional architecture of amygdala-centered networks in relation to both traits. To this end, seed-based correlation analysis was employed to reveal amygdala resting-state functional connectivity (RSFC) and its associations with neuroticism and extraversion in 50 healthy participants. Higher neuroticism scores were associated with increased amygdala RSFC with the precuneus, and decreased amygdala RSFC with the temporal poles, insula, and superior temporal gyrus (p < .05, cluster corrected). Conversely, higher extraversion scores were associated with increased amygdala RSFC with the putamen, temporal pole, insula, and several regions of the occipital cortex (p < .05, cluster corrected). The shifts in amygdala RSFC associated with neuroticism may relate to the less-adaptive perception and processing of self-relevant and socioemotional information that is frequently seen in neurotic individuals, whereas the amygdala RSFC pattern associated with extraversion may relate to the heightened reward sensitivity and enhanced socioemotional functioning in extraverts. We hypothesize that the variability in amygdala RSFC observed in the present study could potentially link neuroticism and extraversion to the neurobiology underlying increased susceptibility or resilience to affective disorders.


Neuroticism Extraversion Amygdala Resting-state fMRI Functional connectivity 


Author Note

The authors gratefully acknowledge Ramona Demenescu and Anita Kuiper for the MRI data acquisition, and Henk Cremers and Tom Johnstone for their valuable discussions and input on the methods. The infrastructure for the NESDA study is funded through the Geestkracht program of the Netherlands Organization for Health Research and Development (ZonMw, Grant No. 10-000-1002) and is supported by the participating universities and mental health care organizations (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen, Lentis, GGZ Friesland, GGZ Drenthe, IQ Healthcare, the Netherlands Institute for Health Services Research [NIVEL], and the Netherlands Institute of Mental Health and Addiction [Trimbos Institute]). Part of this research was supported by a VIDI grant from the Netherlands Organization for Scientific Research (NWO) to S.A.R.B.R., and by the NWO National Initiative Brain and Cognition (NWO-NIHC, Project Nos. 056-25-010 and 056-23-011).

Supplementary material

13415_2013_224_Fig3_ESM.jpg (58 kb)
Supplemental Figure 1

Amygdala resting-state functional connectivity associated with neuroticism at an uncorrected threshold of Z>2.3. Red and yellow denote a positive association with functional connectivity of the left and right amygdala, respectively. Blue and green denote a negative association with functional connectivity of the left and right amygdala, respectively. The results are superimposed on the MNI-152 standard brain. The right side of the images corresponds to the left side of the brain and vice-versa (JPEG 57 kb)

13415_2013_224_MOESM1_ESM.tif (7.9 mb)
High resolution image (TIFF 8118 kb)
13415_2013_224_Fig4_ESM.jpg (61 kb)
Supplemental Figure 2

Amygdala resting-state functional connectivity associated with extraversion at an uncorrected threshold of Z>2.3. Red and yellow denote a positive association with functional connectivity of the left and right amygdala, respectively. Blue and green denote a negative association with functional connectivity of the left and right amygdala, respectively. The results are superimposed on the MNI-152 standard brain. The right side of the images corresponds to the left side of the brain and vice-versa. (JPEG 60 kb)

13415_2013_224_MOESM2_ESM.tif (7.9 mb)
High resolution image (TIFF 8118 kb)
13415_2013_224_MOESM3_ESM.pdf (45 kb)
ESM 1 (PDF 44 kb)


  1. Adelstein, J. S., Shehzad, Z., Mennes, M., Deyoung, C. G., Zuo, X. N., Kelly, C., & Milham, M. P. (2011). Personality is reflected in the brain’s intrinsic functional architecture. PLoS ONE, 6, e27633. doi: 10.1371/journal.pone.0027633 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169–177.CrossRefPubMedGoogle Scholar
  3. Amaral, D. G. (1986). Amygdalohippocampal and amygdalocortical projections in the primate brain. Advances in Experimental Medicine and Biology, 203, 3–17.CrossRefPubMedGoogle Scholar
  4. Bach, D. R., Behrens, T. E., Garrido, L., Weiskopf, N., & Dolan, R. J. (2011). Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. Journal of Neuroscience, 31, 618–623. doi: 10.1523/JNEUROSCI.2744-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ballard, K., & Knutson, B. (2009). Dissociable neural representations of future reward magnitude and delay during temporal discounting. NeuroImage, 45, 143–150. doi: 10.1016/j.neuroimage.2008.11.004 CrossRefPubMedGoogle Scholar
  6. Balleine, B. W., & Killcross, S. (2006). Parallel incentive processing: An integrated view of amygdala function. Trends in Neurosciences, 29, 272–279.CrossRefPubMedGoogle Scholar
  7. Baur, V., Hänggi, J., Langer, N., & Jäncke, L. (2013). Resting-state functional and structural connectivity within an insula–amygdala route specifically index state and trait anxiety. Biological Psychiatry, 73, 85–92. doi: 10.1016/j.biopsych.2012.06.003 CrossRefPubMedGoogle Scholar
  8. Bienvenu, O. J., Nestadt, G., Samuels, J. F., Costa, P. T., Howard, W. T., & Eaton, W. W. (2001). Phobic, panic, and major depressive disorders and the five-factor model of personality. Journal of Nervous and Mental Disease, 189, 154–161.CrossRefPubMedGoogle Scholar
  9. Bolger, N., & Zuckerman, A. (1995). A framework for studying personality in the stress process. Journal of Personality and Social Psychology, 69, 890–902.CrossRefPubMedGoogle Scholar
  10. Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 49–57. doi: 10.1016/j.tics.2006.11.004 CrossRefPubMedGoogle Scholar
  11. Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D. E., & Cahill, L. (2000). Event-related activation in the human amygdala associates with later memory for individual emotional experience. Journal of Neuroscience, 20, RC99.PubMedGoogle Scholar
  12. Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H., & Gabrieli, J. D. E. (2002). Amygdala response to happy faces as a function of extraversion. Science, 296, 2191.CrossRefPubMedGoogle Scholar
  13. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564–583. doi: 10.1093/brain/awl004 CrossRefPubMedGoogle Scholar
  14. Clark, L. A., Watson, D., & Mineka, S. (1994). Temperament, personality, and the mood and anxiety disorders. Journal of Abnormal Psychology, 103, 103–116.CrossRefPubMedGoogle Scholar
  15. Cohen, M. X., Young, J., Baek, J. M., Kessler, C., & Ranganath, C. (2005). Individual differences in extraversion and dopamine genetics predict neural reward responses. Cognitive Brain Research, 25, 851–861. doi: 10.1016/j.cogbrainres.2005.09.018 CrossRefPubMedGoogle Scholar
  16. Costa, P. T., & McCrae, R. R. (1992). Professional manual of the revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI). Sarasota, FL: Psychological Assessment Resources.Google Scholar
  17. Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.CrossRefPubMedGoogle Scholar
  18. Craig, A. D. (2010). The sentient self. Brain Structure and Function, 214, 563–577.CrossRefPubMedGoogle Scholar
  19. Cremers, H. R., Demenescu, L. R., Aleman, A., Renken, R., van Tol, M.-J., van der Wee, N. J., & Roelofs, K. (2010). Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. NeuroImage, 49, 963–970.CrossRefPubMedGoogle Scholar
  20. Cremers, H., van Tol, M.-J., Roelofs, K., Aleman, A., Zitman, F. G., van Buchem, M. A., & van der Wee, N. J. (2011). Extraversion is linked to volume of the orbitofrontal cortex and amygdala. PLoS ONE, 6, e28421. doi: 10.1371/journal.pone.0028421 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Deckersbach, T., Miller, K. K., Klibanski, A., Fischman, A., Dougherty, D. D., Blais, M. A., & Rauch, S. L. (2006). Regional cerebral brain metabolism correlates of neuroticism and extraversion. Depression and Anxiety, 23, 133–138.CrossRefPubMedGoogle Scholar
  22. DeVido, J., Jones, M., Geraci, M., Hollon, N., Blair, R. J., Pine, D. S., & Blair, K. (2009). Stimulus-reinforcement-based decision making and anxiety: Impairment in generalized anxiety disorder (GAD) but not in generalized social phobia (GSP). Psychological Medicine, 39, 1153–1161. doi: 10.1017/S003329170800487X CrossRefPubMedGoogle Scholar
  23. DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience: Brain structure and the big five. Psychological Science, 21, 820–828.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Durrett, C., & Trull, T. J. (2005). An evaluation of evaluative personality terms: A comparison of the big seven and five-factor model in predicting psychopathology. Psychological Assessment, 17, 359–368.CrossRefPubMedGoogle Scholar
  25. Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V., & Greicius, M. D. (2009). Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Archives of General Psychiatry, 66, 1361–1372. doi: 10.1001/archgenpsychiatry.2009.104 CrossRefPubMedGoogle Scholar
  26. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.CrossRefPubMedGoogle Scholar
  27. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101, 3270–3283.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Geerts, E., & Bouhuys, N. (1998). Multi-level prediction of short-term outcome of depression: Non-verbal interpersonal processes, cognitions and personality traits. Psychiatry Research, 79, 59–72.CrossRefPubMedGoogle Scholar
  29. Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115, 1261–1279.CrossRefPubMedGoogle Scholar
  30. Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J., & Moscovitch, M. (2004). Remembering our past: Functional neuroanatomy of recollection of recent and very remote personal events. Cerebral Cortex, 14, 1214–1225.CrossRefPubMedGoogle Scholar
  31. Haas, B. W., Omura, K., Constable, R. T., & Canli, T. (2007). Emotional conflict and neuroticism: Personality-dependent activation in the amygdala and subgenual anterior cingulate. Behavioral Neuroscience, 121, 249–256. doi: 10.1037/0735-7044.121.2.249 CrossRefPubMedGoogle Scholar
  32. Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4–26. doi: 10.1038/npp.2009.129 CrossRefPubMedGoogle Scholar
  33. Hennenlotter, A., & Schroeder, U. (2006). Partly dissociable neural substrates for recognizing basic emotions: A critical review. Progress in Brain Research, 156, 443–456.CrossRefPubMedGoogle Scholar
  34. Henriques, J. B., & Davidson, R. J. (2000). Decreased responsiveness to reward in depression. Cognition and Emotion, 14, 711–724.CrossRefGoogle Scholar
  35. Hughes, C., & Dunn, J. (1998). Understanding mind and emotion: Longitudinal associations with mental-state talk between young friends. Developmental Psychology, 34, 1026–1037.CrossRefPubMedGoogle Scholar
  36. Inoue, Y., Tonooka, Y., Yamada, K., & Kanba, S. (2004). Deficiency of theory of mind in patients with remitted mood disorder. Journal of Affective Disorders, 82, 403–409.PubMedGoogle Scholar
  37. Kennis, M., Rademaker, A. R., & Geuze, E. (2013). Neural correlates of personality: An integrative review. Neuroscience and Biobehavioral Reviews, 37, 73–95. doi: 10.1016/j.neubiorev.2012.10.012 CrossRefPubMedGoogle Scholar
  38. Kerr, N., Dunbar, R. I. M., & Bentall, R. P. (2003). Theory of mind deficits in bipolar affective disorder. Journal of Affective Disorders, 73, 253–259.CrossRefPubMedGoogle Scholar
  39. Khan, A. A., Jacobson, K. C., Gardner, C. O., Prescott, C. A., & Kendler, K. S. (2005). Personality and comorbidity of common psychiatric disorders. British Journal of Psychiatry, 186, 190–196.CrossRefPubMedGoogle Scholar
  40. Kircher, T. T. J., Brammer, M., Bullmore, E., Simmons, A., Bartels, M., & David, A. S. (2002). The neural correlates of intentional and incidental self processing. Neuropsychologia, 40, 683–692. doi: 10.1016/S0028-3932(01)00138-5 CrossRefPubMedGoogle Scholar
  41. Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. Journal of Neuroscience, 25, 4806–4812.CrossRefPubMedGoogle Scholar
  42. Kotov, R., Gamez, W., Schmidt, F., & Watson, D. (2010). Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. Psychological Bulletin, 136, 768–821. doi: 10.1037/a0020327 CrossRefPubMedGoogle Scholar
  43. Kumari, V., ffytche, D. H., Williams, S. C. R., & Gray, J. A. (2004). Personality predicts brain responses to cognitive demands. Journal of Neuroscience, 24, 10636–10641.CrossRefPubMedGoogle Scholar
  44. Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B. (2010). A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Structure and Function, 214, 519–534.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lam, D., Smith, N., Checkley, S., Rijsdijk, F., & Sham, P. (2003). Effect of neuroticism, response style and information processing on depression severity in a clinically depressed sample. Psychological Medicine, 33, 469–479.CrossRefPubMedGoogle Scholar
  46. Larsen, R. J., & Ketelaar, T. (1991). Personality and susceptibility to positive and negative emotional states. Journal of Personality and Social Psychology, 61, 132–140.CrossRefPubMedGoogle Scholar
  47. Liao, W., Qiu, C., Gentili, C., Walter, M., Pan, Z., Ding, J., & Chen, H. (2010). Altered effective connectivity network of the amygdala in social anxiety disorder: A resting-state fMRI study. PLoS ONE, 5, e15238. doi: 10.1371/journal.pone.0015238 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lou, H. C., Luber, B., Crupain, M., Keenan, J. P., Nowak, M., Kjaer, T. W., & Lisanby, S. H. (2004). Parietal cortex and representation of the mental self. Proceedings of the National Academy of Sciences, 101, 6827–6832.CrossRefGoogle Scholar
  49. Markett, S., Weber, B., Voigt, G., Montag, C., Felten, A., Elger, C., & Reuter, M. (2013). Intrinsic connectivity networks and personality: The temperament dimension harm avoidance moderates functional connectivity in the resting brain. Neuroscience, 240, 98–105.CrossRefPubMedGoogle Scholar
  50. McCrae, R. R., & Costa, P. T., Jr. (1991). Adding Liebe und Arbeit: The Full Five-Factor Model and well-being. Personality and Social Psychology Bulletin, 17, 227–232. doi: 10.1177/014616729101700217 CrossRefGoogle Scholar
  51. Mischel, W. (2004). Toward an integrative science of the person. Annual Review of Psychology, 55, 1–22. doi: 10.1146/annurev.psych.55.042902.130709 CrossRefPubMedGoogle Scholar
  52. Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., & Frith, C. D. (2007). When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science, 317, 1079–1083.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Montag, C., Reuter, M., Jurkiewicz, M., Markett, S., & Panksepp, J. (2013). Imaging the structure of the human anxious brain: A review of findings from neuroscientific personality psychology. Reviews in the Neurosciences, 24, 167–190.CrossRefPubMedGoogle Scholar
  54. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? NeuroImage, 44, 893–905. doi: 10.1016/j.neuroimage.2008.09.036 CrossRefPubMedGoogle Scholar
  55. Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11, 489–497.CrossRefPubMedGoogle Scholar
  56. Olson, I. R., Ploaker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130, 1718–1731.CrossRefPubMedGoogle Scholar
  57. Pannekoek, J. N., Veer, I. M., van Tol, M.-J., van der Werff, S. J., Demenescu, L. R., Aleman, A., & van der Wee, N. J. (2013). Aberrant limbic and salience network resting-state functional connectivity in panic disorder without comorbidity. Journal of Affective Disorders, 145, 29–35. doi: 10.1016/j.jad.2012.07.006 CrossRefPubMedGoogle Scholar
  58. Penninx, B. W. J. H., Beekman, A. T. F., Smit, J. H., Zitman, F. G., Nolen, W. A., Spinhoven, P., & NESDA Research Consortium. (2008). The Netherlands Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. International Journal of Methods in Psychiatric Research, 17, 121–140. doi: 10.1002/mpr.256 CrossRefPubMedGoogle Scholar
  59. Perlman, G., Simmons, A. N., Wu, J., Hahn, K. S., Tapert, S. F., Max, J. E., & Yang, T. T. (2012). Amygdala response and functional connectivity during emotion regulation: A study of 14 depressed adolescents. Journal of Affective Disorders, 139, 75–84.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9, 148–158. doi: 10.1038/nrn2317 CrossRefPubMedGoogle Scholar
  61. Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., & Weinberger, D. R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828–834.CrossRefPubMedGoogle Scholar
  62. Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175–187.CrossRefPubMedGoogle Scholar
  63. Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003a). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 54, 504–514.CrossRefPubMedGoogle Scholar
  64. Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003b). Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biological Psychiatry, 54, 515–528.CrossRefPubMedGoogle Scholar
  65. Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13, 833–857. doi: 10.1038/mp.2008.65 CrossRefGoogle Scholar
  66. Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35, 192–216.CrossRefPubMedGoogle Scholar
  67. Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1, 3–12. doi: 10.1089/brain.2011.0019 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Reuter, M., Stark, R., Hennig, J., Walter, B., Kirsch, P., Schienle, A., & Vaitl, D. (2004). Personality and emotion: Test of Gray’s personality theory by means of an fMRI study. Behavioral Neuroscience, 118, 462–469.CrossRefPubMedGoogle Scholar
  69. Riemann, R., Angleitner, A., & Strelau, J. (1997). Genetic and environmental influences on personality: A study of twins reared together using the self- and peer report NEO-FFI Scales. Journal of Personality, 65, 449–475.CrossRefGoogle Scholar
  70. Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Gotimer, K., & Milham, M. P. (2009). Functional connectivity of the human amygdala using resting state fMRI. NeuroImage, 45, 614–626.CrossRefPubMedGoogle Scholar
  71. Saygin, Z. M., Osher, D. E., Augustinack, J., Fischl, B., & Gabrieli, J. D. E. (2011). Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. NeuroImage, 56, 1353–1361.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schmidt, L. A., & Riniolo, T. C. (1999). The role of neuroticism in test and social anxiety. Journal of Social Psychology, 139, 394–395.CrossRefPubMedGoogle Scholar
  73. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349–2356.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: Review of literature and implications for future research. Neuroscience and Biobehavioral Reviews, 30, 855–863.CrossRefPubMedGoogle Scholar
  75. Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences, 13, 334–340.CrossRefPubMedGoogle Scholar
  76. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106, 13040–13045.CrossRefGoogle Scholar
  77. Stein, J. L., Wiedholz, L. M., Bassett, D. S., Weinberger, D. R., Zink, C. F., Mattay, V. S., & Meyer-Lindenberg, A. (2007). A validated network of effective amygdala connectivity. NeuroImage, 36(3), 736–745. doi: 10.1016/j.neuroimage.2007.03.022
  78. Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164, 318–327.Google Scholar
  79. Stober, J. (2003). Self-pity: Exploring the links to personality, control beliefs, and anger. Journal of Personality, 71, 183–220.CrossRefPubMedGoogle Scholar
  80. Sylvester, C. M., Corbetta, M., Raichle, M. E., Rodebaugh, T. L., Schlaggar, B. L., Sheline, Y. I., & Lenze, E. J. (2012). Functional network dysfunction in anxiety and anxiety disorders. Trends in Neurosciences, 35, 527–535.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tamir, M. (2005). Don’t worry, be happy? Neuroticism, trait-consistent affect regulation, and performance. Journal of Personality and Social Psychology, 89, 449–461.CrossRefPubMedGoogle Scholar
  82. Trapnell, P. D., & Campbell, J. D. (1999). Private self-consciousness and the five-factor model of personality: Distinguishing rumination from reflection. Journal of Personality and Social Psychology, 76, 284–304.CrossRefPubMedGoogle Scholar
  83. Vaidya, J. G., Paradiso, S., Andreasen, N. C., Johnson, D. L., Ponto, L. L. B., & Hichwa, R. D. (2007). Correlation between extraversion and regional cerebral blood flow in response to olfactory stimuli. American Journal of Psychiatry, 164, 339–341.CrossRefPubMedGoogle Scholar
  84. Veer, I. M., Beckmann, C. F., van Tol, M.-J., Ferrarini, L., Milles, J., Veltman, D. J., & Rombouts, S. A. R. B. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Frontiers in Systems Neuroscience, 4, 41. doi: 10.3389/fnsys.2010.00041 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Veer, I. M., Oei, N. Y. L., Spinhoven, P., van Buchem, M. A., Elzinga, B. M., & Rombouts, S. A. R. B. (2011). Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures. NeuroImage, 57, 1534–1541.CrossRefPubMedGoogle Scholar
  86. Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., & Windischberger, C. (2009). Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. NeuroImage, 47, 1408–1416.CrossRefPubMedGoogle Scholar
  87. Whalen, P. J. (1998). Fear, vigilance, and ambiguity: Initial neuroimaging studies of the human amygdala. Current Directions in Psychological Science, 7, 177–188.CrossRefGoogle Scholar
  88. Yacubian, J., Glascher, J., Schroeder, K., Sommer, T., Braus, D. F., & Buchel, C. (2006). Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. Journal of Neuroscience, 26, 9530–9537.CrossRefPubMedGoogle Scholar
  89. Yamagata, S., Suzuki, A., Ando, J., Ono, Y., Kijima, N., Yoshimura, K., & Jang, K. L. (2006). Is the genetic structure of human personality universal? A cross-cultural twin study from North America, Europe, and Asia. Journal of Personality and Social Psychology, 90, 987–998.CrossRefPubMedGoogle Scholar
  90. Zeng, L.-L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., & Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135, 1498–1507.CrossRefPubMedGoogle Scholar
  91. Zobel, I., Werden, D., Linster, H., Dykierek, P., Drieling, T., Berger, M., & Schramm, E. (2010). Theory of mind deficits in chronically depressed patients. Depression and Anxiety, 27, 821–828.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Moji Aghajani
    • 1
    • 2
  • Ilya M. Veer
    • 1
    • 3
  • Marie-José van Tol
    • 4
  • André Aleman
    • 4
  • Mark A. van Buchem
    • 1
    • 5
  • Dick J. Veltman
    • 6
  • Serge A. R. B. Rombouts
    • 1
    • 5
    • 7
  • Nic J. van der Wee
    • 1
    • 8
  1. 1.Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
  2. 2.Department of Child and Adolescent Psychiatry CuriumLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité UniversitätsmedizinBerlinGermany
  4. 4.BCN NeuroImaging CenterUniversity of GroningenGroningenThe Netherlands
  5. 5.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  6. 6.Department of PsychiatryVU Medical CenterAmsterdamThe Netherlands
  7. 7.Institute of PsychologyLeiden UniversityLeidenThe Netherlands
  8. 8.Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations