Evidence for a fixed capacity limit in attending multiple locations

  • Edward F. EsterEmail author
  • Keisuke Fukuda
  • Lisa M. May
  • Edward K. Vogel
  • Edward Awh


A classic question concerns whether humans can attend multiple locations or objects at once. Although it is generally agreed that the answer to this question is “yes,” the limits on this ability are subject to extensive debate. According to one view, attentional resources can be flexibly allocated to a variable number of locations, with an inverse relationship between the number of selected locations and the quality of information processing at each location. Alternatively, these resources might be quantized in a “discrete” fashion that enables concurrent access to a small number of locations. Here, we report a series of experiments comparing these alternatives. In each experiment, we cued participants to attend a variable number of spatial locations and asked them to report the orientation of a single, briefly presented target. In all experiments, participants’ orientation report errors were well-described by a model that assumes a fixed upper limit in the number of locations that can be attended. Conversely, report errors were poorly described by a flexible-resource model that assumes no fixed limit on the number of locations that can be attended. Critically, we showed that these discrete limits were predicted by cue-evoked neural activity elicited before the onset of the target array, suggesting that performance was limited by selection processes that began prior to subsequent encoding and memory storage. Together, these findings constitute novel evidence supporting the hypothesis that human observers can attend only a small number of discrete locations at an instant.


Attention Working memory ERP 


Author note

Supported by Grant No. NIH R01-MH087214 to E.A. and E.K.V. E.F.E. and E.A. conceived and designed all experiments. E.F.E. and L.M.M. collected the data and analyzed them using software developed by K.F. Author E.K.V. provided guidance and assistance with electrophysiological recordings. E.F.E. and E.A. wrote the manuscript.


  1. Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16, 637–643.PubMedCrossRefGoogle Scholar
  2. Alvarez, G. A., Gill, J., & Cavanagh, P. (2012). Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection. Journal of Vision, 12(5), 9. doi: 10.1167/12.5.9 PubMedCrossRefGoogle Scholar
  3. Anderson, D. E., & Awh, E. (2012). The plateau in mnemonic resolution across large set sizes indicates discrete resource limits in visual working memory. Attention, Perception, & Psychophysics, 74, 891–910. doi: 10.3758/s13414-012-0292-1 CrossRefGoogle Scholar
  4. Anderson, D. E., Vogel, E. K., & Awh, E. (2011). Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. Journal of Neuroscience, 31, 1128–1138. doi: 10.1523/JNEUROSCI.4125-10.2011 PubMedCrossRefGoogle Scholar
  5. Anderson, D. E., Vogel, E. K., & Awh, E. (2013). A common discrete resource for visual working memory and visual search. Psychological Science, 24, 929–938.PubMedCrossRefGoogle Scholar
  6. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628. doi: 10.1111/j.1467-9280.2007.01949.x PubMedCrossRefGoogle Scholar
  7. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. doi: 10.1016/S1364-6613(00)01593-X PubMedCrossRefGoogle Scholar
  8. Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834–846.PubMedGoogle Scholar
  9. Barton, B., Ester, E. F., & Awh, E. (2009). Discrete resource allocation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 35, 1359–1367. doi: 10.1037/a0015792 PubMedCentralPubMedGoogle Scholar
  10. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10):7, 1–11. doi:  10.1167/9.10.7 Google Scholar
  11. Bergen, J. R., & Julesz, B. (1983). Parallel versus serial processing in rapid pattern discrimination. Nature, 303, 696–698.PubMedCrossRefGoogle Scholar
  12. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357 PubMedCrossRefGoogle Scholar
  13. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi: 10.1017/S0140525X01003922. disc. 114–185.PubMedCrossRefGoogle Scholar
  14. Cusack, R., Mitchell, D. J., & Duncan, J. (2010). Discrete object representation, attention switching, and task difficulty in the parietal lobe. Journal of Cognitive Neuroscience, 22, 32–47.PubMedCrossRefGoogle Scholar
  15. Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selection and tracking multiple moving objects. Journal of Neuroscience, 28, 4183–4191. doi: 10.1523/JNEUROSCI.0556-08.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi: 10.1037/0033-295X.96.3.433 PubMedCrossRefGoogle Scholar
  17. Enns, J. T., & Di Lollo, V. (1997). Object substitution: A new form of masking in unattended visual locations. Psychological Science, 8, 135–139. doi: 10.1111/j.1467-9280.1997.tb00696.x CrossRefGoogle Scholar
  18. Ester, E. F., Drew, T., Klee, D., Vogel, E. K., & Awh, E. (2012). Neural measures reveal a fixed item limit in subitizing. Journal of Neuroscience, 32, 7169–7177.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2007). How many locations can be selected at once? Journal of Experimental Psychology: Human Perception and Performance, 33, 1003–1012. doi: 10.1037/0096-1523.33.5.1003 PubMedGoogle Scholar
  20. Hopf, J., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., & Heinze, H. J. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241.PubMedCrossRefGoogle Scholar
  21. Huang, L., & Pashler, H. (2005). Attention capacity and task difficulty in visual search. Cognition, 94, B101–B111. doi: 10.1016/j.cognition.2004.06.006 PubMedCrossRefGoogle Scholar
  22. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219. doi: 10.1016/0010-0285(92)90007-O PubMedCrossRefGoogle Scholar
  23. Kramer, A. F., & Hahn, S. (1995). Splitting the beam: Distribution of attention over noncontiguous regions of the visual field. Psychological Science, 6, 381–386.CrossRefGoogle Scholar
  24. Liebe, S., Hoerzer, G. M., Logothetis, N. K., & Rainer, G. (2012). Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 15, 456–462.PubMedCrossRefGoogle Scholar
  25. Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.PubMedCrossRefGoogle Scholar
  26. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi: 10.1038/36846 PubMedCrossRefGoogle Scholar
  27. MacKay, D. J. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.Google Scholar
  28. Malinowski, P., Fuchs, S., & Müller, M. M. (2007). Sustained division of spatial attention to multiple locations within one hemifield. Neuroscience Letters, 414, 65–70.PubMedCrossRefGoogle Scholar
  29. Mazyar, H., van den Berg, R., & Ma, W. J. (2012). Does precision decrease with set size? Journal of Vision, 12(6), 10. doi: 10.1167/12.6.10 PubMedCentralPubMedCrossRefGoogle Scholar
  30. McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43, 77–94.PubMedCrossRefGoogle Scholar
  31. McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42, 677–686.PubMedCrossRefGoogle Scholar
  32. McMains, S. A., & Somers, D. (2005). Processing efficiency of divided spatial attention mechanisms in human visual cortex. Journal of Neuroscience, 25, 9444–9448.PubMedCrossRefGoogle Scholar
  33. Mitchell, D. J., & Cusack, R. (2008). Flexible, capacity-limited activity of posterior parietal cortex in perceptual as well as visual short-term memory tasks. Cerebral Cortex, 18, 1788–1798.PubMedCrossRefGoogle Scholar
  34. Müller, M. M., Malinowski, P., Gruber, T., & Hillyard, S. A. (2003). Sustained division of the attentional spotlight. Nature, 424, 309–312.PubMedCrossRefGoogle Scholar
  35. Pashler, H. (1988). Familiarity and visual change detection. Perception and Psychophysics, 44(4), 369–378.Google Scholar
  36. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366 PubMedCrossRefGoogle Scholar
  37. Raffone, A., & Wolters, G. (2001). A cortical mechanism for binding in visual working memory. Journal of Cognitive Neuroscience, 13, 766–785.PubMedCrossRefGoogle Scholar
  38. Rensink, R., & Enns, J. T. (1995). Preemption effects in visual search: Evidence for low-level grouping. Psychological Review, 102, 101–130. doi: 10.1037/0033-295X.102.1.101 PubMedCrossRefGoogle Scholar
  39. Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Proceedings of the National Academy of Sciences, 105, 5975–5979.CrossRefGoogle Scholar
  40. Sagi, D., & Julesz, B. (1985). “Where” and “what” in vision. Science, 228, 1217–1219.PubMedCrossRefGoogle Scholar
  41. Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., & Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19, 1846–1852. doi: 10.1016/j.cub.2009.08.062 PubMedCrossRefGoogle Scholar
  42. Scharff, A., Palmer, J., & Moore, C. M. (2011a). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18, 713–721. doi: 10.3758/s13423-011-0101-1 CrossRefGoogle Scholar
  43. Scharff, A., Palmer, J., & Moore, C. M. (2011b). Extending the stimultaneous–sequential paradigm to measure perceptual capacity for features and words. Journal of Experimental Psychology: Human Perception and Performance, 37, 813–833. doi: 10.1037/a0021440 PubMedGoogle Scholar
  44. Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences, 106, 21341–21346.CrossRefGoogle Scholar
  45. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. doi: 10.1016/0010-0285(80)90005-5 PubMedCrossRefGoogle Scholar
  46. Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited-capacity preattentive processing. Journal of Experimental Psychology: Human Perception and Performance, 19, 331–351. doi: 10.1037/0096-1523.19.2.331 PubMedGoogle Scholar
  47. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80–102. doi: 10.1037/0033-295X.101.1.80 PubMedCrossRefGoogle Scholar
  48. Van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109, 8780–8785.CrossRefGoogle Scholar
  49. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. doi: 10.1038/nature02447 PubMedCrossRefGoogle Scholar
  50. Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44, 92–107.PubMedCrossRefGoogle Scholar
  51. Xu, Y., & Chun, M. M. (2005). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95. doi: 10.1038/nature04262 PubMedCrossRefGoogle Scholar
  52. Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Science, 13, 167–174. doi: 10.1016/j.tics.2009.01.008 CrossRefGoogle Scholar
  53. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi: 10.1038/nature06860 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428. doi: 10.1111/j.1467-9280.2009.02322.x PubMedCentralPubMedCrossRefGoogle Scholar
  55. Zhang, W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22, 1434–1441. doi: 10.1177/0956797611417006 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Edward F. Ester
    • 1
    • 3
    Email author
  • Keisuke Fukuda
    • 1
  • Lisa M. May
    • 1
    • 2
  • Edward K. Vogel
    • 1
    • 2
  • Edward Awh
    • 1
    • 2
  1. 1.Department of PsychologyUniversity of California San DiegoLa JollaUSA
  2. 2.Department of PsychologyUniversity of OregonEugeneUSA
  3. 3.Department of PsychologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations