Training attention improves decision making in individuals with elevated self-reported depressive symptoms

  • Jessica A. Cooper
  • Marissa A. Gorlick
  • Taylor Denny
  • Darrell A. Worthy
  • Christopher G. Beevers
  • W. Todd Maddox


Depression is often characterized by attentional biases toward negative items and away from positive items, which likely affects reward and punishment processing. Recent work has reported that training attention away from negative stimuli reduced this bias and reduced depressive symptoms. However, the effect of attention training on subsequent learning has yet to be explored. In the present study, participants were required to learn to maximize reward during decision making. Undergraduates with elevated self-reported depressive symptoms received attention training toward positive stimuli prior to performing the decision-making task (n = 20; active training). The active-training group was compared to two other groups: undergraduates with elevated self-reported depressive symptoms who received placebo training (n = 22; placebo training) and a control group with low levels of depressive symptoms (n = 33; nondepressive control). The placebo-training depressive group performed worse and switched between options more than did the nondepressive controls on the reward maximization task. However, depressives that received active training performed as well as the nondepressive controls. Computational modeling indicated that the placebo-trained group learned more from negative than from positive prediction errors, leading to more frequent switching. The nondepressive control and active-training depressive groups showed similar learning from positive and negative prediction errors, leading to less-frequent switching and better performance. Our results indicate that individuals with elevated depressive symptoms are impaired at reward maximization, but that the deficit can be improved with attention training toward positive stimuli.


Depression Decision making Computational modeling Reflexive processing Reward Punishment 


Author note

This research was funded by NIDA Grant No. DA032457 to W.T.M. and C.G.B., and by AFOSR Grant No. FA9550-11-C-0028 to W.T.M. The first author was supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship. We thank Seth Koslov for help with the data collection.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Amir, N., Beard, C., Taylor, C. T., Klumpp, H., Elias, J., Burns, M., & Chen, X. (2009). Attention training in individuals with generalized social phobia: A randomized controlled trial. Journal of Consulting and Clinical Psychology, 77, 961–973. doi: 10.1037/a0016685 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baert, S., De Raedt, R., Schacht, R., & Koster, E. H. W. (2010). Attentional bias training in depression: Therapeutic effects depend on depression severity. Journal of Behavior Therapy and Experimental Psychiatry, 41, 265–274. doi: 10.1016/j.jbtep.2010.02.004 CrossRefPubMedGoogle Scholar
  4. Beck, A. T. (1976). Cognitive therapy and the emotional disorders. Oxford, UK: International Universities Press.Google Scholar
  5. Beck, A. T., & Steer, R. A. (1993). Beck depression inventory: Manual. San Antonio, TX: Psychological Corp.Google Scholar
  6. Beekman, A. T. F., Deeg, D. J. H., Limbeek, J., Braam, A. W., De Vries, M. Z., & Tilburg, W. (1997). Criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): Results from a community-based sample of older subjects in the Netherlands. Psychological Medicine, 27, 231–235.CrossRefPubMedGoogle Scholar
  7. Beevers, C. G., Worthy, D. A., Gorlick, M. A., Nix, B., Chotibut, T., & Maddox, W. T. (2013). Influence of depression symptoms on history-independent reward and punishment processing. Psychiatry Research, 207, 53–60. doi: 10.1016/j.psychres.2012.09.054 CrossRefPubMedGoogle Scholar
  8. Berenbaum, H., & Oltmanns, T. F. (1992). Emotional experience and expression in schizophrenia and depression. Journal of Abnormal Psychology, 101, 37–44. doi: 10.1037/0021-843X.101.1.37 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507–513. doi: 10.1016/S0166-2236(03)00233-9 CrossRefPubMedGoogle Scholar
  10. Bradley, B. P., Mogg, K., & Lee, S. C. (1997). Attentional biases for negative information in induced and naturally occurring dysphoria. Behaviour Research and Therapy, 35, 911–927. doi: 10.1016/S0005-7967(97)00053-3 CrossRefPubMedGoogle Scholar
  11. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Stimuli, instruction manual and affective ratings (Technical Report No. C-1). Gainesville, FL: University of Florida, NIMH Center for Research in Psychophysiology.Google Scholar
  12. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357 CrossRefPubMedGoogle Scholar
  13. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.Google Scholar
  14. Doll, B. B., Jacobs, W. J., Sanfey, A. G., & Frank, M. J. (2009). Instructional control of reinforcement learning: A behavioral and neurocomputational investigation. Brain Research, 1299, 74–94. doi: 10.1016/j.brainres.2009.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ellis, A. J., Beevers, C. G., & Wells, T. T. (2011). Attention allocation and incidental recognition of emotional information in dysphoria. Cognitive Therapy and Research, 35, 425–433. doi: 10.1007/s10608-010-9305-3 CrossRefGoogle Scholar
  16. Eshel, N., & Roiser, J. P. (2010). Reward and punishment processing in depression. Biological Psychiatry, 68, 118–124. doi: 10.1016/j.biopsych.2010.01.027 CrossRefPubMedGoogle Scholar
  17. Frank, M. J., & Kong, L. (2008). Learning to avoid in older age. Psychology and Aging, 23, 392–398. doi: 10.1037/0882-7974.23.2.392 CrossRefPubMedGoogle Scholar
  18. Frank, M. J., Doll, B. B., Oas-Terpstra, J., & Moreno, F. (2009). Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nature Neuroscience, 12, 1062–1068. doi: 10.1038/nn.2342 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 6, 285–312. doi: 10.1146/annurev.clinpsy.121208.131305 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gotlib, I. H., & Krasnoperova, E. (1998). Biased information processing as a vulnerability factor for depression. Behavior Therapy, 29, 603–617. doi: 10.1016/S0005-7894(98)80020-8 CrossRefGoogle Scholar
  21. Gureckis, T. M., & Love, B. C. (2009). Learning in noise: Dynamic decision-making in a variable environment. Journal of Mathematical Psychology, 53, 180–193. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hakamata, Y., Lissek, S., Bar-Haim, Y., Britton, J. C., Fox, N. A., Leibenluft, E., & Pine, D. S. (2010). Attention bias modification treatment: A meta-analysis toward the establishment of novel treatment for anxiety. Biological Psychiatry, 68, 982–990. doi: 10.1016/j.biopsych.2010.07.021 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hallion, L. S., & Ruscio, A. M. (2011). A meta-analysis of the effect of cognitive bias modification on anxiety and depression. Psychological Bulletin, 137, 940–958. doi: 10.1037/a0024355 CrossRefPubMedGoogle Scholar
  24. Hartlage, S., Alloy, L. B., Vázquez, C., & Dykman, B. (1993). Automatic and effortful processing in depression. Psychological Bulletin, 113, 247–278. doi: 10.1037/0033-2909.113.2.247 CrossRefPubMedGoogle Scholar
  25. Henriques, J. B., & Davidson, R. J. (2000). Decreased responsiveness to reward in depression. Cognition and Emotion, 14, 711–724.CrossRefGoogle Scholar
  26. Henriques, J. B., Glowacki, J. M., & Davidson, R. J. (1994). Reward fails to alter response bias in depression. Journal of Abnormal Psychology, 103, 460–466. doi: 10.1037/0021-843X.103.3.460 CrossRefPubMedGoogle Scholar
  27. Hertel, P. T. (1994). Depression and memory: Are impairments remediable through attentional control? Current Directions in Psychological Science, 3, 190–193.CrossRefGoogle Scholar
  28. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., . . . National Comorbidity Survey Replication. (2003). The epidemiology of major depressive disorder: Results from the National Comorbidity Survey replication (NCS-R). JAMA, 289, 3095–3105. doi: 10.1001/jama.289.23.3095 Google Scholar
  29. Kessler, R. C., & Walters, E. E. (1998). Epidemiology of DSM-III-R major depression and minor depression among adolescents and young adults in the national comorbidity survey. Depression and Anxiety, 7, 3–14. doi: 10.1002/(SICI)1520-6394(1998)7:1<3::AID-DA2>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  30. Kruschke, J. K. (2008). Bayesian approaches to associative learning: From passive to active learning. Learning & Behavior, 36, 210–226. doi: 10.3758/LB.36.3.210 CrossRefGoogle Scholar
  31. Kunisato, Y., Okamoto, Y., Ueda, K., Onoda, K., Okada, G., Yoshimura, S., & Yamawaki, S. (2012). Effects of depression on reward-based decision making and variability of action in probabilistic learning. Journal of Behavior Therapy and Experimental Psychiatry, 43, 1088–1094. doi: 10.1016/j.jbtep.2012.05.007 CrossRefPubMedGoogle Scholar
  32. Lee, M. D., Zhang, S., Munro, M., & Steyvers, M. (2011). Psychological models of human and optimal performance in bandit problems. Cognitive Systems Research, 12, 164–174. doi: 10.1016/j.cogsys.2010.07.007 CrossRefGoogle Scholar
  33. MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 15–20. doi: 10.1037/0021-843X.95.1.15 CrossRefPubMedGoogle Scholar
  34. MacLeod, C., Rutherford, E., Campbell, L., Ebsworthy, G., & Holker, L. (2002). Selective attention and emotional vulnerability: Assessing the causal basis of their association through the experimental manipulation of attentional bias. Journal of Abnormal Psychology, 111, 107–123. doi: 10.1037/0021-843X.111.1.107 CrossRefPubMedGoogle Scholar
  35. Maddox, W. T., Gorlick, M. A., Worthy, D. A., & Beevers, C. G. (2012). Depressive symptoms enhance loss-minimization, but attenuate gain-maximization in history-dependent decision-making. Cognition, 125, 118–124.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167–195.CrossRefPubMedGoogle Scholar
  37. Mogg, K., & Bradley, B. P. (2005). Attentional bias in generalized anxiety disorder versus depressive disorder. Cognitive Therapy and Research, 29, 29–45. doi: 10.1007/s10608-005-1646-y CrossRefGoogle Scholar
  38. Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J. I. (2010). An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment. Journal of Neuroscience, 30, 12366–12378. doi: 10.1523/JNEUROSCI.0822-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366 CrossRefPubMedGoogle Scholar
  40. Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., & Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166, 702–710. doi: 10.1176/appi.ajp.2008.08081201 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43, 76–87. doi: 10.1016/j.jpsychires.2008.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Radloff, L. S. (1977). The CES-D scale a self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401.CrossRefGoogle Scholar
  43. Ridderinkhof, K. R., & van den Wildenberg, W. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56, 129–140. doi: 10.1016/j.bandc.2004.09.016 CrossRefPubMedGoogle Scholar
  44. Sears, C. R., Thomas, C. L., LeHuquet, J. M., & Johnson, J. C. S. (2010). Attentional biases in dysphoria: An eye-tracking study of the allocation and disengagement of attention. Cognition and Emotion, 24, 1349–1368.CrossRefGoogle Scholar
  45. Steyvers, M., Lee, M. D., & Wagenmakers, E.-J. (2009). A Bayesian analysis of human decision-making on bandit problems. Journal of Mathematical Psychology, 53, 168–179. doi: 10.1016/ CrossRefGoogle Scholar
  46. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.Google Scholar
  47. Teasdale, J. D. (1988). Cognitive vulnerability to persistent depression. Cognition and Emotion, 2, 247–274.CrossRefGoogle Scholar
  48. Wadlinger, H. A., & Isaacowitz, D. M. (2008). Looking happy: The experimental manipulation of a positive visual attention bias. Emotion, 8, 121–126. doi: 10.1037/1528-3542.8.1.121 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192–196. doi: 10.3758/BF03206482 CrossRefGoogle Scholar
  50. Weissman, M. M., & Sholomskas, D. (1977). Assessing depressive symptoms in five psychiatric populations: A validation study. American Journal of Epidemiology, 106, 203–214.PubMedGoogle Scholar
  51. Wells, K. B., & Trust, P. M. (1989). The functioning and well-being of depressed patients: Results from the Medical Outcomes Study, 35, 425–433.Google Scholar
  52. Wells, T. T., & Beevers, C. G. (2010). Biased attention and dysphoria: Manipulating selective attention reduces subsequent depressive symptoms. Cognition and Emotion, 24, 719–728.CrossRefGoogle Scholar
  53. Worthy, D. A., & Maddox, W. T. (2011). Age-based differences in strategy use in choice tasks. Frontiers in Neuroscience, 5(145), 1–10. doi: 10.3389/fnins.2011.00145 Google Scholar
  54. Yechiam, E., & Busemeyer, J. R. (2005). Comparison of basic assumptions embedded in learning models for experience-based decision making. Psychonomic Bulletin & Review, 12, 387–402. doi: 10.3758/BF03193783 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Jessica A. Cooper
    • 1
    • 3
  • Marissa A. Gorlick
    • 1
    • 3
  • Taylor Denny
    • 1
  • Darrell A. Worthy
    • 2
  • Christopher G. Beevers
    • 1
    • 3
  • W. Todd Maddox
    • 1
    • 3
    • 4
  1. 1.Department of PsychologyThe University of TexasAustinUSA
  2. 2.Psychology DepartmentTexas A&MBryanUSA
  3. 3.Institute for Mental Health ResearchUniversity of TexasAustinUSA
  4. 4.Institute for Neuroscience and Center for Perceptual SystemsUniversity of TexasAustinUSA

Personalised recommendations