Advertisement

Isolation rearing effects on probabilistic learning and cognitive flexibility in rats

  • Nurith Amitai
  • Jared W. YoungEmail author
  • Kerin Higa
  • Richard F. Sharp
  • Mark A. Geyer
  • Susan B. Powell
Article

Abstract

Isolation rearing is a neurodevelopmental manipulation that produces neurochemical, structural, and behavioral alterations in rodents that in many ways are consistent with schizophrenia. Symptoms induced by isolation rearing that mirror clinically relevant aspects of schizophrenia, such as cognitive deficits, open up the possibility of testing putative therapeutics in isolation-reared animals prior to clinical development. We investigated what effect isolation rearing would have on cognitive flexibility, a cognitive function characteristically disrupted in schizophrenia. For this purpose, we assessed cognitive flexibility using between- and within-session probabilistic reversal-learning tasks based on clinical tests. Isolation-reared rats required more sessions, though not more task trials, to acquire criterion performance in the reversal phase of the task, and were slower to adjust their task strategy after reward contingencies were switched. Isolation-reared rats also completed fewer trials and exhibited lower levels of overall activity in the probabilistic reversal-learning task than did the socially reared rats. This finding contrasted with the elevated levels of unconditioned investigatory activity and reduced levels of locomotor habituation that isolation-reared rats displayed in the behavioral pattern monitor. Finally, isolation-reared rats also exhibited sensorimotor gating deficits, reflected by decreased prepulse inhibition of the startle response, consistent with previous studies. We concluded that isolation rearing constitutes a valuable, noninvasive manipulation for modeling schizophrenia-like cognitive deficits and assessing putative therapeutics.

Keywords

Isolation rearing Probabilistic learning Reversal learning Prepulse inhibition Behavioral pattern monitor Schizophrenia Habituation Investigatory behavior Startle response Rats 

Notes

Author note

Supported by NIH Grant Nos. R21 MH091571 and R01 MH091407. M.A.G. holds equity interest in San Diego Instruments. No other authors have any potential conflicts of interest to declare. The authors thank Neal Swerdlow, Adam Halberstadt, and Mahalah Buell for their assistance.

References

  1. Addington, J., Penn, D., Woods, S. W., Addington, D., & Perkins, D. O. (2008). Social functioning in individuals at clinical high risk for psychosis. Schizophrenia Research, 99, 119–124. doi: 10.1016/j.schres.2007.10.001 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Agid, O., Shapira, B., Zislin, J., Ritsner, M., Hanin, B., Murad, H., . . . Lerer, B. (1999). Environment and vulnerability to major psychiatric illness: A case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Molecular Psychiatry, 4, 163–172.Google Scholar
  3. Bakshi, V. P., & Geyer, M. A. (1999). Ontogeny of isolation rearing-induced deficits in sensorimotor gating in rats. Physiology & Behavior, 67, 385–392.CrossRefGoogle Scholar
  4. Bakshi, V. P., Swerdlow, N. R., Braff, D. L., & Geyer, M. A. (1998). Reversal of isolation rearing-induced deficits in prepulse inhibition by Seroquel and olanzapine. Biological Psychiatry, 43, 436–445.PubMedCrossRefGoogle Scholar
  5. Bari, A., Theobald, D. E., Caprioli, D., Mar, A. C., Aidoo-Micah, A., Dalley, J. W., . . . Robbins, T. W. (2010). Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology, 35, 1290–1301. doi: 10.1038/npp.2009.233 Google Scholar
  6. Barnett, P. A., & Gotlib, I. H. (1988). Psychosocial functioning and depression: Distinguishing among antecedents, concomitants, and consequences. Psychological Bulletin, 104, 97–126. doi: 10.1037/0033-2909.104.1.97 PubMedCrossRefGoogle Scholar
  7. Becker, J., & Kleinman, A. (Eds.). (1991). Psychosocial aspects of depression. Hillsdale, NJ: Erlbaum.Google Scholar
  8. Bianchi, M., Fone, K. F., Azmi, N., Heidbreder, C. A., Hagan, J. J., & Marsden, C. A. (2006). Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. European Journal of Neuroscience, 24, 2894–2902.PubMedCrossRefGoogle Scholar
  9. Blanc, G., Herve, D., Simon, H., Lisoprawski, A., Glowinski, J., & Tassin, J. P. (1980). Response to stress of mesocortico-frontal dopaminergic neurones in rats after long-term isolation. Nature, 284, 265–267.PubMedCrossRefGoogle Scholar
  10. Boulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research, 179, 219–228. doi: 10.1016/j.bbr.2007.02.005 PubMedCrossRefGoogle Scholar
  11. Braff, D. L., & Geyer, M. A. (1990). Sensorimotor gating and schizophrenia: Human and animal model studies. Archives of General Psychiatry, 47, 181–188.PubMedCrossRefGoogle Scholar
  12. Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156, 234–258.PubMedCrossRefGoogle Scholar
  13. Braff, D. L., Grillon, C., & Geyer, M. A. (1992). Gating and habituation of the startle reflex in schizophrenic patients. Archives of General Psychiatry, 49, 206–215.PubMedCrossRefGoogle Scholar
  14. Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., & Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15, 339–343.PubMedCrossRefGoogle Scholar
  15. Cannon, T. D., Cadenhead, K., Cornblatt, B., Woods, S. W., Addington, J., Walker, E., . . . Heinssen, R. (2008). Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America. Archives of General Psychiatry, 65, 28–37. doi: 10.1001/archgenpsychiatry.2007.3 Google Scholar
  16. Cilia, J., Hatcher, P. D., Reavill, C., & Jones, D. N. (2005). Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats: An update. Psychopharmacology, 180, 57–62.PubMedCrossRefGoogle Scholar
  17. Cilia, J., Reavill, C., Hagan, J. J., & Jones, D. N. (2001). Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats. Psychopharmacology, 156, 327–337.PubMedCrossRefGoogle Scholar
  18. Dalley, J. W., Theobald, D. E., Pereira, E. A., Li, P. M., & Robbins, T. W. (2002). Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology, 164, 329–340.PubMedCrossRefGoogle Scholar
  19. Elvevåg, B., & Goldberg, T. E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Critical Review of Neurobiology, 14, 1–21.CrossRefGoogle Scholar
  20. Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain, 126, 1830–1837.PubMedCrossRefGoogle Scholar
  21. Fone, K. C., & Porkess, M. V. (2008). Behavioural and neurochemical effects of post-weaning social isolation in rodents—Relevance to developmental neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 32, 1087–1102. doi: 10.1016/j.neubiorev.2008.03.003 PubMedCrossRefGoogle Scholar
  22. Fulford, A. J., & Marsden, C. A. (1998). Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. Journal of Neurochemistry, 70, 384–390.PubMedCrossRefGoogle Scholar
  23. Geyer, M. A., Russo, P. V., & Masten, V. L. (1986). Multivariate assessment of locomotor behavior: Pharmacological and behavioral analyses. Pharmacology Biochemistry and Behavior, 25, 277–288.CrossRefGoogle Scholar
  24. Geyer, M. A., Wilkinson, L. S., Humby, T., & Robbins, T. W. (1993). Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biological Psychiatry, 34, 361–372.PubMedCrossRefGoogle Scholar
  25. Gilmour, G., Arguello, A., Bari, A., Brown, V. J., Carter, C., Floresco, S. B., . . . Robbins, T. W. (in press). Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience and Biobehavioral Reviews. doi: 10.1016/j.neubiorev.2012.04.006
  26. Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H., & Podd, M. H. (1987). Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Archives of General Psychiatry, 44, 1008–1014.PubMedCrossRefGoogle Scholar
  27. Gresack, J. E., Risbrough, V. B., Scott, C. N., Coste, S., Stenzel-Poore, M., Geyer, M. A., & Powell, S. B. (2010). Isolation rearing-induced deficits in contextual fear learning do not require CRF(2) receptors. Behavioural Brain Research, 209, 80–84. doi: 10.1016/j.bbr.2010.01.018 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Häfner, H., Löffler, W., Maurer, K., Hambrecht, M., & an der Heiden, W. (1999). Depression, negative symptoms, social stagnation and social decline in the early course of schizophrenia. Acta Psychiatrica Scandinavica, 100, 105–118.PubMedCrossRefGoogle Scholar
  29. Hall, F. S. (1998). Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Critical Reviews in Neurobiology, 12, 129–162.PubMedCrossRefGoogle Scholar
  30. Hall, F. S., Huang, S., Fong, G. W., Pert, A., & Linnoila, M. (1998). Effects of isolation-rearing on locomotion, anxiety and responses to ethanol in Fawn Hooded and Wistar rats. Psychopharmacology, 139, 203–209.PubMedCrossRefGoogle Scholar
  31. Hatashita-Wong, M., Smith, T. E., Silverstein, S. M., Hull, J. W., & Willson, D. F. (2002). Cognitive functioning and social problem-solving skills in schizophrenia. Cognitive Neuropsychiatry, 7, 81–95.PubMedCrossRefGoogle Scholar
  32. Heidbreder, C. A., Weiss, I. C., Domeney, A. M., Pryce, C., Homberg, J., Hedou, G., . . . Nelson, P. (2000). Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience, 100, 749–768.Google Scholar
  33. Hellemans, K. G., Benge, L. C., & Olmstead, M. C. (2004). Adolescent enrichment partially reverses the social isolation syndrome. Developmental Brain Research, 150, 103–115.PubMedCrossRefGoogle Scholar
  34. Howes, S. R., Dalley, J. W., Morrison, C. H., Robbins, T. W., & Everitt, B. J. (2000). Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: Relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala–striatal FOS expression. Psychopharmacology, 151, 55–63.PubMedCrossRefGoogle Scholar
  35. Jones, C. A., Brown, A. M., Auer, D. P., & Fone, K. C. (2011). The mGluR2/3 agonist LY379268 reverses post-weaning social isolation-induced recognition memory deficits in the rat. Psychopharmacology, 214, 269–283. doi: 10.1007/s00213-010-1931-7 PubMedCrossRefGoogle Scholar
  36. Jones, G. H., Hernandez, T. D., Kendall, D. A., Marsden, C. A., & Robbins, T. W. (1992). Dopaminergic and serotonergic function following isolation rearing in rats: Study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacology Biochemistry and Behavior, 43, 17–35.CrossRefGoogle Scholar
  37. Jones, G. H., Marsden, C. A., & Robbins, T. W. (1991). Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: Neurochemical correlates. Behavioural Brain Research, 43, 35–50.PubMedCrossRefGoogle Scholar
  38. Jones, G. H., Robbins, T. W., & Marsden, C. A. (1989). Isolation-rearing retards the acquisition of schedule-induced polydipsia in rats. Physiology & Behavior, 45, 71–77.CrossRefGoogle Scholar
  39. King, M. V., Seeman, P., Marsden, C. A., & Fone, K. C. (2009). Increased dopamine D2High receptors in rats reared in social isolation. Synapse, 63, 476–483. doi: 10.1002/syn.20624 PubMedCrossRefGoogle Scholar
  40. Krech, D., Rosenzweig, M. R., & Bennett, E. L. (1962). Relations between chemistry and problem-solving among rats raised in enriched and impoverished environments. Journal of Comparative & Physiological Psychology, 55, 801–807.CrossRefGoogle Scholar
  41. Lapiz, M. D., Mateo, Y., Parker, T., & Marsden, C. (2000). Effects of noradrenaline depletion in the brain on response on novelty in isolation-reared rats. Psychopharmacology, 152, 312–320.PubMedCrossRefGoogle Scholar
  42. Leeson, V. C., Robbins, T. W., Matheson, E., Hutton, S. B., Ron, M. A., Barnes, T. R., & Joyce, E. M. (2009). Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: Stability over six years and specific associations with medication type and disorganization syndrome. Biological Psychiatry, 66, 586–593. doi: 10.1016/j.biopsych.2009.05.016 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Li, N., Wu, X., & Li, L. (2007). Chronic administration of clozapine alleviates reversal-learning impairment in isolation-reared rats. Behavioural Pharmacology, 18, 135–145.PubMedCrossRefGoogle Scholar
  44. Lim, C., Chong, S. A., & Keefe, R. S. (2009). Psychosocial factors in the neurobiology of schizophrenia: A selective review. Annals: Academy of Medicine Singapore, 38, 402–406.Google Scholar
  45. Lukasz, B., O’Sullivan, N. C., Loscher, J. S., Pickering, M., Regan, C. M., & Murphy, K. J. (2013). Peripubertal viral-like challenge and social isolation mediate overlapping but distinct effects on behaviour and brain interferon regulatory factor 7 expression in the adult Wistar rat. Brain, Behavior, and Immunity, 27, 71–79. doi: 10.1016/j.bbi.2012.09.011 PubMedCrossRefGoogle Scholar
  46. McCool, B. A., & Chappell, A. M. (2009). Early social isolation in male Long-Evans rats alters both appetitive and consummatory behaviors expressed during operant ethanol self-administration. Alcoholism, Clinical and Experimental Research, 33, 273–282.PubMedCentralPubMedCrossRefGoogle Scholar
  47. McLean, S., Grayson, B., Harris, M., Protheroe, C., Woolley, M., & Neill, J. (2010). Isolation rearing impairs novel object recognition and attentional set shifting performance in female rats. Journal of Psychopharmacology, 24, 57–63. doi: 10.1177/0269881108093842 PubMedCrossRefGoogle Scholar
  48. Meyer, B., Johnson, S. L., & Winters, R. (2001). Responsiveness to threat and incentive in bipolar disorder: Relations of the BIS/BAS scales with symptoms. Journal of Psychopathology and Behavioral Assessment, 23, 133–143.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Mogenson, G. J., & Nielsen, M. (1984). Neuropharmacological evidence to suggest that the nucleus accumbens and subpallidal region contribute to exploratory locomotion. Behavioral and Neural Biology, 42, 52–60.PubMedCrossRefGoogle Scholar
  50. Mogenson, G. J., & Wu, M. (1991). Quinpirole to the accumbens reduces exploratory and amphetamine-elicited locomotion. Brain Research Bulletin, 27, 743–746.PubMedCrossRefGoogle Scholar
  51. Møller, P., & Husby, R. (2000). The initial prodrome in schizophrenia: Searching for naturalistic core dimensions of experience and behavior. Schizophrenia Bulletin, 26, 217–232.PubMedCrossRefGoogle Scholar
  52. Morice, R. (1990). Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. British Journal of Psychiatry, 157, 50–54.PubMedCrossRefGoogle Scholar
  53. Mortimer, A. M. (1997). Cognitive function in schizophrenia: Do neuroleptics make a difference? Pharmacology Biochemistry and Behavior, 56, 789–795.CrossRefGoogle Scholar
  54. Murphy, F. C., Michael, A., Robbins, T. W., & Sahakian, B. J. (2003). Neuropsychological impairment in patients with major depressive disorder: The effects of feedback on task performance. Psychological Medicine, 33, 455–467.PubMedCrossRefGoogle Scholar
  55. Murray, G. K., Cheng, F., Clark, L., Barnett, J. H., Blackwell, A. D., Fletcher, P. C., . . . Jones, P. B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophrenia Bulletin, 34, 848–855. doi: 10.1093/schbul/sbn078 Google Scholar
  56. Nelson, H. E., Pantelis, C., Carruthers, K., Speller, J., Baxendale, S., & Barnes, T. R. E. (1990). Cognitive functioning and symptomatology in chronic schizophrenia. Psychological Medicine, 20, 357–365.PubMedCrossRefGoogle Scholar
  57. Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia Research, 72, 29–39. doi: 10.1016/j.schres.2004.09.007 PubMedCrossRefGoogle Scholar
  58. Otto, A. R., Gershman, S. J., Markman, A. B., & Daw, N. D. (2013). The curse of planning: Dissecting multiple reinforcement-learning systems by taxing the central executive. Psychological Science, 24, 751–761. doi: 10.1177/0956797612463080 PubMedCrossRefGoogle Scholar
  59. Paulus, M. P., Bakshi, V. P., & Geyer, M. A. (1998). Isolation rearing affects sequential organization of motor behavior in post-pubertal but not pre-pubertal Lister and Sprague-Dawley rats. Behavioural Brain Research, 94, 271–280.PubMedCrossRefGoogle Scholar
  60. Perry, W., Minassian, A., Paulus, M. P., Young, J. W., Kincaid, M. J., Ferguson, E. J., . . . Geyer, M. A. (2009). A reverse-translational study of dysfunctional exploration in psychiatric disorders: From mice to men. Archives of General Psychiatry, 66, 1072–1080. doi: 10.1001/archgenpsychiatry.2009.58 Google Scholar
  61. Powell, S. B. (2010). Models of neurodevelopmental abnormalities in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 435–481.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Powell, S. B., Swerdlow, N. R., Pitcher, L. K., & Geyer, M. A. (2002). Isolation rearing-induced deficits in prepulse inhibition and locomotor habituation are not potentiated by water deprivation. Physiology & Behavior, 77, 55–64.CrossRefGoogle Scholar
  63. Ragland, J. D., Cools, R., Frank, M., Pizzagalli, D. A., Preston, A., Ranganath, C., & Wagner, A. D. (2009). CNTRICS final task selection: Long-term memory. Schizophrenia Bulletin, 35, 197–212. doi: 10.1093/schbul/sbn134 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Risbrough, V. B., Masten, V. L., Caldwell, S., Paulus, M. P., Low, M. J., & Geyer, M. A. (2006). Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice. Neuropsychopharmacology, 31, 2349–2358.PubMedCrossRefGoogle Scholar
  65. Robbins, T. W., Jones, G. H., & Wilkinson, L. S. (1996). Behavioural and neurochemical effects of early social deprivation in the rat. Journal of Psychopharmacology, 10, 39–47.PubMedCrossRefGoogle Scholar
  66. Roiser, J. P., Cannon, D. M., Gandhi, S. K., Taylor Tavares, J., Erickson, K., Wood, S., . . . Drevets, W. C. (2009). Hot and cold cognition in unmedicated depressed subjects with bipolar disorder. Bipolar Disorders, 11, 178–189. doi: 10.1111/j.1399-5618.2009.00669.x Google Scholar
  67. Rygula, R., Walker, S. C., Clarke, H. F., Robbins, T. W., & Roberts, A. C. (2010). Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. Journal of Neuroscience, 30, 14552–14559.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Sahakian, B. J., Robbins, T. W., Morgan, M. J., & Iversen, S. D. (1975). The effects of psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and control rats. Brain Research, 84, 195–205.PubMedCrossRefGoogle Scholar
  69. Santesso, D. L., Steele, K. T., Bogdan, R., Holmes, A. J., Deveney, C. M., Meites, T. M., & Pizzagalli, D. A. (2008). Enhanced negative feedback responses in remitted depression. NeuroReport, 19, 1045–1048. doi: 10.1097/WNR.0b013e3283036e73 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Schrijver, N. C., Pallier, P. N., Brown, V. J., & Wurbel, H. (2004). Double dissociation of social and environmental stimulation on spatial learning and reversal learning in rats. Behavioural Brain Research, 152, 307–314.PubMedCrossRefGoogle Scholar
  71. Schrijver, N. C., & Wurbel, H. (2001). Early social deprivation disrupts attentional, but not affective, shifts in rats. Behavioral Neuroscience, 115, 437–442.PubMedCrossRefGoogle Scholar
  72. Schubert, M. I., Porkess, M. V., Dashdorj, N., Fone, K. C., & Auer, D. P. (2009). Effects of social isolation rearing on the limbic brain: A combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience, 159, 21–30.PubMedCrossRefGoogle Scholar
  73. Sharma, T., & Antonova, L. (2003). Cognitive function in schizophrenia: Deficits, functional consequences, and future treatment. Psychiatric Clinics of North America, 26, 25–40.PubMedCrossRefGoogle Scholar
  74. Svensson, L., & Ahlenius, S. (1983). Suppression of exploratory locomotor activity in the rat by the local application of 3-PPP enantiomers into the nucleus accumbens. European Journal of Pharmacology, 88, 393–397.PubMedCrossRefGoogle Scholar
  75. Taylor Tavares, J. V., Clark, L., Furey, M. L., Williams, G. B., Sahakian, B. J., & Drevets, W. C. (2008). Neural basis of abnormal response to negative feedback in unmedicated mood disorders. NeuroImage, 42, 1118–1126.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Tyson, P. J., Laws, K. R., Flowers, K. A., Tyson, A., & Mortimer, A. M. (2006). Cognitive function and social abilities in patients with schizophrenia: Relationship with atypical antipsychotics. Psychiatry and Clinical Neurosciences, 60, 473–479.PubMedCrossRefGoogle Scholar
  77. Valzelli, L. (1973). The “isolation syndrome” in mice. Psychopharmacologia, 31, 305–320.PubMedCrossRefGoogle Scholar
  78. van den Buuse, M. (2010). Modeling the positive symptoms of schizophrenia in genetically modified mice: Pharmacology and methodology aspects. Schizophrenia Bulletin, 36, 246–270. doi: 10.1093/schbul/sbp132 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Varty, G. B., & Geyer, M. A. (1998). Effects of isolation rearing on startle reactivity, habituation, and prepulse inhibition in male Lewis, Sprague-Dawley, and Fischer F344 rats. Behavioral Neuroscience, 112, 1450–1457.PubMedCrossRefGoogle Scholar
  80. Varty, G. B., & Higgins, G. A. (1995). Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. Psychopharmacology, 122, 15–26.PubMedCrossRefGoogle Scholar
  81. Varty, G. B., Paulus, M. P., Braff, D. L., & Geyer, M. A. (2000). Environmental enrichment and isolation rearing in the rat: Effects on locomotor behavior and startle response plasticity. Biological Psychiatry, 47, 864–873.PubMedCrossRefGoogle Scholar
  82. Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal–cortical dysfunction. Biological Psychiatry, 62, 756–764. doi: 10.1016/j.biopsych.2006.09.042 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophrenia Research, 93, 296–303.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Warren, J. M. (1966). Reversal learning and the formation of learning sets by cats and rhesus monkeys. Journal of Comparative & Physiological Psychology, 61, 421–428.CrossRefGoogle Scholar
  85. Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669.PubMedCrossRefGoogle Scholar
  86. Wilkinson, L. S., Killcross, S. S., Humby, T., Hall, F. S., Geyer, M. A., & Robbins, T. W. (1994). Social isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology, 10, 61–72.PubMedCrossRefGoogle Scholar
  87. Wongwitdecha, N., & Marsden, C. A. (1996). Effects of social isolation rearing on learning in the Morris water maze. Brain Research, 715, 119–124.PubMedCrossRefGoogle Scholar
  88. Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. Neuron, 75, 418–424.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Young, J. W., Minassian, A., Paulus, M. P., Geyer, M. A., & Perry, W. (2007). A reverse-translational approach to bipolar disorder: Rodent and human studies in the Behavioral Pattern Monitor. Neuroscience and Biobehavioral Reviews, 31, 882–896. doi: 10.1016/j.neubiorev.2007.05.009 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Zeeb, F. D., Wong, A. C., & Winstanley, C. A. (2013). Differential effects of environmental enrichment, social-housing, and isolation-rearing on a rat gambling task: Dissociations between impulsive action and risky decision-making. Psychopharmacology, 225, 381–395. doi: 10.1007/s00213-012-2822-x PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Nurith Amitai
    • 1
  • Jared W. Young
    • 1
    • 2
    Email author
  • Kerin Higa
    • 1
  • Richard F. Sharp
    • 1
  • Mark A. Geyer
    • 1
    • 2
  • Susan B. Powell
    • 1
    • 2
  1. 1.Department of PsychiatryUniversity of California San DiegoLa JollaUSA
  2. 2.Research Service, VA San Diego Healthcare SystemSan DiegoUSA

Personalised recommendations