Cognitive, Affective, & Behavioral Neuroscience

, Volume 14, Issue 1, pp 220–235

The time course of episodic associative retrieval: Electrophysiological correlates of cued recall of unimodal and crossmodal pair-associate learning

Article

Abstract

Little is known about the time course of processes supporting episodic cued recall. To examine these processes, we recorded event-related scalp electrical potentials during episodic cued recall following pair-associate learning of unimodal object-picture pairs and crossmodal object-picture and sound pairs. Successful cued recall of unimodal associates was characterized by markedly early scalp potential differences over frontal areas, while cued recall of both unimodal and crossmodal associates were reflected by subsequent differences recorded over frontal and parietal areas. Notably, unimodal cued recall success divergences over frontal areas were apparent in a time window generally assumed to reflect the operation of familiarity but not recollection processes, raising the possibility that retrieval success effects in that temporal window may reflect additional mnemonic processes beyond familiarity. Furthermore, parietal scalp potential recall success differences, which did not distinguish between crossmodal and unimodal tasks, seemingly support attentional or buffer accounts of posterior parietal mnemonic function but appear to constrain signal accumulation, expectation, or representational accounts.

Keywords

Episodic memory Cued recall ERP Recollection Familiarity Parietal lobes 

References

  1. Addante, R. J., Watrous, A. J., Yonelinas, A. P., Ekstrom, A. D., & Ranganath, C. (2011). Prestimulus theta activity predicts correct source memory retrieval. Proceedings of the National Academy of Sciences, 108, 10702–10707. doi:10.1073/pnas.1014528108 CrossRefGoogle Scholar
  2. Allan, K., Doyle, M. C., & Rugg, M. D. (1996). An event-related potential study of word-stem cued recall. Cognitive Brain Research, 4, 251–262. doi:10.1016/S0926-6410(96)00061-4 PubMedCrossRefGoogle Scholar
  3. Allan, K., & Rugg, M. D. (1997). An event-related potential study of explicit memory on tests of cued recall and recognition. Neuropsychologia, 35, 387–397. doi:10.1016/S0028-3932(96)00094-2 PubMedCrossRefGoogle Scholar
  4. Allan, K., Wolf, A. H., Rosenthal, C. R., & Rugg, M. D. (2001). The effect of retrieval cues on post-retrieval monitoring in episodic memory: An electrophysiological study. Cognitive Brain Research, 12, 289–299. doi:10.1016/S0926-6410(01)00061-1 PubMedCrossRefGoogle Scholar
  5. Ally, B. A., & Budson, A. E. (2007). The worth of pictures: Using high density event-related potentials to understand the memorial power of pictures and the dynamics of recognition memory. NeuroImage, 35, 378–395. doi:10.1016/j.neuroimage.2006.11.023 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Ally, B. A., Simons, J. S., McKeever, J. D., Peers, P. V., & Budson, A. E. (2008). Parietal contributions to recollection: Electrophysiological evidence from aging and patients with parietal lesions. Neuropsychologia, 46, 1800–1812. doi:10.1016/j.neuropsychologia.2008.02.026 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bagiella, E., Sloan, R. P., & Heitjan, D. F. (2000). Mixed-effects models in psychophysiology. Psychophysiology, 37, 13–20. doi:10.1111/1469-8986.3710013 PubMedCrossRefGoogle Scholar
  8. Bastin, C., Diana, R. A., Simon, J., Collette, F., Yonelinas, A. P., & Salmon, E. (2013). Associative memory in aging: The effect of unitization on source memory. Psychology and Aging, 28, 275–83. doi:10.1037/a0031566 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bergström, Z. M., Henson, R. N., Taylor, J. R., & Simons, J. S. (2013). Multimodal imaging revelas the spatiotemporal dynamics of recollection. NeuroImage, 68, 141–153. doi:10.1016/j.neuroimage.2012.11.030 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Buchsbaum, B. R., Ye, D., & D'Esposito, M. (2011). Recency effects in the inferior parietal lobe during verbal recognition memory. Frontiers in Human Neuroscience, 5, 59. doi:10.3389/fnhum.2011.00059 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cabeza, R., Ciaramelli, E., & Moscovitch, M. (2012). Cognitive contributions of the ventral parietal cortex: An integrative theoretical account. Trends in Cognitive Sciences, 16, 338–52. doi:10.1016/j.tics.2012.04.008 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Ciaramelli, E., Grady, C., Levine, B., Ween, J., & Moscovitch, M. (2010). Top-down and bottom-up attention to memory are dissociated in posterior parietal cortex: Neuroimaging and neuropsychological evidence. The Journal of Neuroscience, 30, 4943–4956. doi:10.1523/JNEUROSCI.1209-09.2010 PubMedCrossRefGoogle Scholar
  13. Cruse, D. C., & Wilding, E. L. (2011). Temporally and functionally dissociable retrieval processing operations revealed by event-related potentials. Neuropsychologia, 49, 1751–1760. doi:10.1016/j.neuropsychologia.2011.02.053 PubMedCrossRefGoogle Scholar
  14. Curran, T., & Dien, J. (2003). Differentiating amodal familiarity from modality-specific memory processes: An ERP study. Psychophysiology, 40, 979–988. doi:10.1111/1469-8986.00116 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Curran, T., & Doyle, J. (2011). Picture superiority doubly dissociates the ERP correlates of recollection and familiarity. Journal of Cognitive Neuroscience, 23, 1247–1262. doi:10.1162/jocn.2010.21464 PubMedCrossRefGoogle Scholar
  16. de Zubicaray, G., McMahon, K., Eastburn, M., Pringle, A. J., Lorenz, L., & Humphreys, M. S. (2007). Support for an auto-associative model of spoken cued recall: Evidence from fMRI. Neuropsychologia, 45, 824–835. doi:10.1016/j.neuropsychologia.2006.08.013 PubMedCrossRefGoogle Scholar
  17. Diana, R. A., Van den Boom, W., Yonelinas, A. P., & Ranganath, C. (2011). ERP correlates of source memory: Unitized source information increases familiarity-based retrieval. Brain Research, 1367, 278–286. doi:10.1016/j.brainres.2010.10.030 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Diana, R. A., Vilberg, K. L., & Reder, L. M. (2005). Identifying the ERP correlate of a recognition memory search attempt. Cognitive Brain Research, 24, 674–684. doi:10.1016/j.cogbrainres.2005.04.001 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2008). The effects of unitization on familiarity-based source memory: Testing a behavioral prediction derived from neuroimaging data. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 730–740. doi:10.1037/0278-7393.34.4.730 PubMedCentralPubMedGoogle Scholar
  20. Donaldson, D. I., & Rugg, M. D. (1998). Recognition memory for new associations: Electrophysiological evidence for the role of recollection. Neuropsychologia, 36, 377–395. doi:10.1016/S0028-3932(97)00143-7 PubMedCrossRefGoogle Scholar
  21. Donaldson, D. I., & Rugg, M. D. (1999). Event-related potential studies of associative recognition and recall: Electrophysiological evidence for context dependent retrieval processes. Cognitive Brain Research, 8, 1–16. doi:10.1016/S0926-6410(98)00051-2 PubMedCrossRefGoogle Scholar
  22. Donaldson, D. I., Wheeler, M. E., & Petersen, S. E. (2010). Remember the source: Dissociating frontal and parietal contributions to episodic memory. Journal of Cognitive Neuroscience, 22, 377–391. doi:10.1162/jocn.2009.21242 Google Scholar
  23. Dzulkifli, M. A., Sharpe, H. L., & Wilding, E. L. (2004). Separating item-related electrophysiological indices of retrieval effort and retrieval orientation. Brain and Cognition, 55, 433–443. doi:10.1016/j.bandc.2004.03.004 PubMedCrossRefGoogle Scholar
  24. Ecker, U. K., & Zimmer, H. D. (2009). ERP evidence for flexible adjustment of retrieval orientation and its influence on familiarity. Journal of Cognitive Neuroscience, 21, 1907–1919. doi:10.1162/jocn.2009.21135 PubMedCrossRefGoogle Scholar
  25. Ecker, U. K. H., Zimmer, H. D., Groh-Bordin, C., & Mecklinger, A. (2007). Context effects on familiarity are familiarity effects of context — An electrophysiological study. International Journal of Psychophysiology, 64, 146–156. doi:10.1016/j.ijpsycho.2007.01.005 PubMedCrossRefGoogle Scholar
  26. Fay, S., Isingrini, M., Ragot, R., & Pouthas, V. (2005). The effect of encoding manipulation on word-stem cued recall: An event-related potential study. Cognitive Brain Research, 24, 615–626. doi:10.1016/j.cogbrainres.2005.03.014 PubMedCrossRefGoogle Scholar
  27. Friedman, D., & Johnson, R. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. Microscopy Research and Technique, 51, 6–28. doi:10.1002/1097-0029(20001001)51:1<6::AID-JEMT2>3.3.CO;2-I PubMedCrossRefGoogle Scholar
  28. Grunwald, T., Pezer, N., Münte, T., Kurthen, M., Lehnertz, K., Van Roost, D., ... Elger, C. E. (2003). Dissecting out conscious and unconscious memory (sub)processes within the human medial temporal lobe. NeuroImage, 20, S139–S145. doi:10.1016/j.neuroimage.2003.09.004
  29. Habib, R., & Nyberg, L. (2008). Neural correlates of availability and accessibility in memory. Cerebral Cortex, 18, 1720–1726. doi:10.1093/cercor/bhm201 PubMedCrossRefGoogle Scholar
  30. Halsband, T. M., Ferdinand, N. K., Bridger, E. K., & Mecklinger, A. (2012). Monetary rewards influence retrieval orientations. Cognitive, Affective, & Behavioral Neuroscience, 12, 430–445. doi:10.3758/s13415-012-0093-y CrossRefGoogle Scholar
  31. Haramati, S., Soroker, N., Dudai, Y., & Levy, D. A. (2008). The posterior parietal cortex in recognition memory: A neuropsychological study. Neuropsychologia, 46, 1756–1766. doi:10.1016/j.neuropsychologia.2007.11.015 PubMedCrossRefGoogle Scholar
  32. Hayama, H. R., Vilberg, K. L., & Rugg, M. D. (2012). Overlap between the neural correlates of cued recall and source memory: Evidence for a generic recollection network? Journal of Cognitive Neuroscience, 24, 1127–1137. doi:10.1162/jocn_a_00202 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Heil, M., Rösler, F., & Hennighausen, E. (1996). Topographically distinct cortical activation in episodic long-term memory: The retrieval of spatial versus verbal information. Memory & Cognition, 24, 777–795. doi:10.3758/BF03201102 CrossRefGoogle Scholar
  34. Henson, R. N. A., Shallice, T., Josephs, O., & Dolan, R. J. (2002). Functional magnetic resonance imaging of proactive interference during spoken cued recall. NeuroImage, 17, 543–558. doi:10.1006/nimg.2002.1229 PubMedCrossRefGoogle Scholar
  35. Herzmann, G., Jin, M., Cordes, D., & Curran, T. (2012). A within-subject ERP and fMRI investigation of orientation-specific recognition memory for pictures. Cognitive Neuroscience, 3, 174–192. doi:10.1080/17588928.2012.669364 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Hornberger, M., Morcom, A. M., & Rugg, M. D. (2004). Neural correlates of retrieval orientation: Effects of study-test similarity. Journal of Cognitive Neuroscience, 16, 1196–1210. doi:10.1162/0898929041920450 PubMedCrossRefGoogle Scholar
  37. Iidaka, T., Matsumoto, A., Nogawa, J., Yamamoto, Y., & Sadato, N. (2006). Frontoparietal network involved in successful retrieval from episodic memory. spatial and temporal analyses using fMRI and ERP. Cerebral Cortex, 16, 1349–1360. doi:10.1093/cercor/bhl040 PubMedCrossRefGoogle Scholar
  38. Jäger, T., Mecklinger, A., & Kipp, K. H. (2006). Intra- and inter-item associations doubly dissociate the electrophysiological correlates of familiarity and recollection. Neuron, 52, 535–45. doi:10.1016/j.neuron.2006.09.013 PubMedCrossRefGoogle Scholar
  39. Johnson, R., Jr., Kreiter, K., Zhu, J., & Russo, B. (1998). A spatio-temporal comparison of semantic and episodic cued recall and recognition using event-related brain potentials. Cognitive Brain Research, 7, 119–136. doi:10.1016/S0926-6410(98)00017-2 PubMedCrossRefGoogle Scholar
  40. Khader, P., Burke, M., Bien, S., Ranganath, C., & Rösler, F. (2005a). Content-specific activation during associative long-term memory retrieval. NeuroImage, 27, 805–816. doi:10.1016/j.neuroimage.2005.05.006 PubMedCrossRefGoogle Scholar
  41. Khader, P., Heil, M., & Rösler, F. (2005b). Material-specific long-term memory representations of faces and spatial positions: Evidence from slow event-related brain potentials. Neuropsychologia, 43, 2109–2124. doi:10.1016/j.neuropsychologia.2005.03.012 PubMedCrossRefGoogle Scholar
  42. Kim, H. (2011). Differential neural activity in the recognition of old versus new events: An activation likelihood estimation meta-analysis. Human Brain Mapping, 34, 814–836. doi:10.1002/hbm.21474 PubMedCrossRefGoogle Scholar
  43. Levy, D. A. (2012). Towards an understanding of parietal mnemonic processes: Some conceptual guideposts. Frontiers in Integrative Neuroscience, 6, 41. doi:10.3389/fnint.2012.00041 PubMedCentralPubMedCrossRefGoogle Scholar
  44. MacKenzie, G., & Donaldson, D. I. (2009). Examining the neural basis of episodic memory: ERP evidence that faces are recollected differently from names. Neuropsychologia, 47, 2756–2765. doi:10.1016/j.neuropsychologia.2009.05.025 PubMedCrossRefGoogle Scholar
  45. Makeig, S., Westerfield, M., Jung, T.-P., Covington, J., Townsend, J., Sejnowski, T. J., & Courchesne, E. (1999). Functionally independent components of the late positive event-related potential during visual spatial attention. The Journal of Neuroscience, 19, 2665–2680.PubMedGoogle Scholar
  46. Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11, 126–135. doi:10.1016/j.tics.2006.12.003 PubMedCrossRefGoogle Scholar
  47. Mecklinger, A. (2000). Interfacing mind and brain: A neurocognitive model of recognition memory. Psychophysiology, 37, 565–582. doi:10.1111/1469-8986.3750565 PubMedCrossRefGoogle Scholar
  48. Meltzer, J. A., & Constable, R. T. (2005). Activation of human hippocampal formation reflects success in both encoding and cued recall of paired associates. NeuroImage, 24, 384–397. doi:10.1016/j.neuroimage.2004.09.001 PubMedCrossRefGoogle Scholar
  49. Mollison, M. V., & Curran, T. (2012). Familiarity in source memory. Neuropsychologia, 50, 2546–2565. doi:10.1016/j.neuropsychologia.2012.06.027 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Moscovitch, M. (1992). Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4, 257–267. doi:10.1162/jocn.1992.4.3.257 PubMedCrossRefGoogle Scholar
  51. Moscovitch, M., & Winocur, G. (2002). The frontal cortex and working with memory. In T. D. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 188–209). Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780195134971.003.0012 CrossRefGoogle Scholar
  52. Nyhus, E., & Curran, T. (2012). Midazolam-induced amnesia reduces memory for details and affects the ERP correlates of recollection and familiarity. Journal of Cognitive Neuroscience, 24, 416–427. doi:10.1162/jocn_a_00154 PubMedCrossRefGoogle Scholar
  53. O'Connor, A. R., Han, S., & Dobbins, I. G. (2010). The inferior parietal lobule and recognition memory: Expectancy violation or successful retrieval? The Journal of Neuroscience, 33, 2924–2934. doi:10.1523/JNEUROSCI.4225-09.2010 CrossRefGoogle Scholar
  54. Okada, K., Vilberg, K. L., & Rugg, M. D. (2012). Comparison of the neural correlates of retrieval success in tests of cued recall and recognition memory. Human Brain Mapping, 33, 523–533. doi:10.1002/hbm.21229 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi:10.1016/0028-3932(71)90067-4 PubMedCrossRefGoogle Scholar
  56. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 1, 1–9. doi:10.1155/2011/156869 CrossRefGoogle Scholar
  57. Opitz, B. (2010). Context-dependent repetition effects on recognition memory. Brain and Cognition, 73, 110–118. doi:10.1016/j.bandc.2010.04.003 PubMedCrossRefGoogle Scholar
  58. Paller, K. A., Lucas, H. D., & Voss, J. L. (2012). Assuming too much from “familiar” brain potentials. Trends in Cognitive Sciences, 16, 313–315. doi:10.1016/j.tics.2012.04.010 PubMedCrossRefGoogle Scholar
  59. Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Core team (2007) nlme: linear and nonlinear mixed effects models. R package version 3.1-86.Google Scholar
  60. Robb, W. G., & Rugg, M. D. (2002). Electrophysiological dissociation of retrieval orientation and retrieval effort. Psychonomic Bulletin and Review, 9, 583–589. doi:10.3758/BF03196316 PubMedCrossRefGoogle Scholar
  61. Rugg, M., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11, 251–257. doi:10.1016/j.tics.2007.04.004 PubMedCrossRefGoogle Scholar
  62. Rugg, M., & Wilding, E. L. (2000). Retrieval processing and episodic memory. Trends in Cognitive Sciences, 4, 108–115. doi:10.1016/S1364-6613(00)01445-5 PubMedCrossRefGoogle Scholar
  63. Schloerscheidt, A. M., & Rugg, M. D. (1997). Recognition memory for words and pictures: An event-related potential study. Neuroreport, 8, 3281–3285. doi:10.1097/00001756-199710200-00018 PubMedCrossRefGoogle Scholar
  64. Schott, B. H., Henson, R. N., Richardson-Klavehn, A., Becker, C., Thoma, V., Heinze, H.-J., & Düzel, E. (2005). Redefining implicit and explicit memory: The functional neuroanatomy of priming, remembering, and control of retrieval. Proceedings of the National Academy of Sciences of the United States of America, 102, 1257–1262. doi:10.1073/pnas.0409070102 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Seibert, T. M., Gimbel, S. I., Hagler, D. J., Jr., & Brewer, J. B. (2011a). Parietal activity in episodic retrieval measured by fMRI and MEG. NeuroImage, 55, 788–793. doi:10.1016/j.neuroimage.2010.11.078 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Seibert, T. M., Hagler, D. J., & Brewer, J. B. (2011b). Early parietal response in episodic retrieval revealed with MEG. Human Brain Mapping, 32, 171–181. doi:10.1002/hbm.21014 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Shimamura, A. P. (2011). Episodic retrieval and the cortical binding of relational activity. Cognitive, Affective, & Behavioral Neuroscience, 11, 277–291. doi:10.3758/s13415-011-0031-4 CrossRefGoogle Scholar
  68. Staresina, B. P., & Davachi, L. (2010). Object unitization and associative memory formation are supported by distinct brain regions. The Journal of Neuroscience, 30, 9890–7. doi:10.1523/JNEUROSCI.0826-10.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Staresina, B. P., Fell, J., Lam, A. T. A. D., Axmacher, N., & Henson, R. N. (2012). Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex. Nature Neuroscience, 15, 1167–1173. doi:10.1038/nn.3154 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Tibon, R., Vakil, E., Goldstein, A., & Levy, D. A. (2012). Unitization and temporality in associative memory: Evidence from modulation of context effects. Journal of Memory and Language, 67, 93–105. doi:10.1016/j.jml.2012.02.003 CrossRefGoogle Scholar
  71. Vilberg, K. L., & Rugg, M. D. (2009). Functional significance of retrieval-related activity in lateral parietal cortex: Evidence from fMRI and ERPs. Human Brain Mapping, 30, 1490–1501. doi:10.1002/hbm.20618 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Neuroscience, 9, 445–453. doi:10.1016/j.tics.2005.07.001 CrossRefGoogle Scholar
  73. Wilding, E. L., & Ranganath, C. (2011). Electrophysiological correlates of episodic memory processes. In S. J. Luck & E. Kappenman (Eds.), The Oxford Handbook of ERP Components (pp. 373–396). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780195374148.013.0187 Google Scholar
  74. Wilding, E. L., & Rugg, M. D. (1996). An event-related potential study of recognition memory with and without retrieval of source. Brain, 119, 889–905. doi:10.1093/brain/119.3.889 PubMedCrossRefGoogle Scholar
  75. Woodruff, C. C., Hayama, H. R., & Rugg, M. D. (2006). Electrophysiological dissociation of the neural correlates of recollection and familiarity. Brain Research, 1100, 125–135. doi:10.1016/j.brainres.2006.05.019 PubMedCrossRefGoogle Scholar
  76. Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441–517. doi:10.1006/jmla.2002.2864 CrossRefGoogle Scholar
  77. Yu, S. S., & Rugg, M. D. (2010). Dissociation of the electrophysiological correlates of familiarity strength and item repetition. Brain Research, 1320, 74–84. doi:10.1016/j.brainres.2009.12.071 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.School of Psychology and Unit for Applied NeuroscienceThe Interdisciplinary CenterHerzliyaIsrael

Personalised recommendations