The role of kinematics in cortical regions for continuous human motion perception

  • Phil McAleer
  • Frank E. Pollick
  • Scott A. Love
  • Frances Crabbe
  • Jeffrey M. Zacks
Article

Abstract

It has been proposed that we make sense of the movements of others by observing fluctuations in the kinematic properties of their actions. At the neural level, activity in the human motion complex (hMT+) and posterior superior temporal sulcus (pSTS) has been implicated in this relationship. However, previous neuroimaging studies have largely utilized brief, diminished stimuli, and the role of relevant kinematic parameters for the processing of human action remains unclear. We addressed this issue by showing extended-duration natural displays of an actor engaged in two common activities, to 12 participants in an fMRI study under passive viewing conditions. Our region-of-interest analysis focused on three neural areas (hMT+, pSTS, and fusiform face area) and was accompanied by a whole-brain analysis. The kinematic properties of the actor, particularly the speed of body part motion and the distance between body parts, were related to activity in hMT+ and pSTS. Whole-brain exploratory analyses revealed additional areas in posterior cortex, frontal cortex, and the cerebellum whose activity was related to these features. These results indicate that the kinematic properties of peoples’ movements are continually monitored during everyday activity as a step to determining actions and intent.

Keywords

Biological motion fMRI Natural events Kinematic properties Perception 

Notes

Acknowledgments

This work was supported by the National Institute on Aging grant 1R01AG031150 and the ESRC/MRC grant RES-060-25-0010. The authors are grateful to Dr. Cyril Pernet, Helen Murphy and Claire Duffy for assistance in imaging.

References

  1. Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology, 52, 1106–1130.PubMedGoogle Scholar
  2. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.PubMedCrossRefGoogle Scholar
  3. Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting dynamic human action via statistical structure. Cognition, 106, 1382–1407.PubMedCrossRefGoogle Scholar
  4. Baldwin, D. A., Baird, J. A., Saylor, M. M., & Clark, M. A. (2001). Infants parse dynamic action. Child Development, 72, 708–717.PubMedCrossRefGoogle Scholar
  5. Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2002). Parallel visual motion processing streams for manipulable objects and human movements. Neuron, 34, 149–159.PubMedCrossRefGoogle Scholar
  6. Blythe, P. W., Todd, P. M., & Miller, G. F. (1999). How motion reveals intention: Categorizing social interactions. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 257–285). New York, NY: Oxford University Press.Google Scholar
  7. Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 16, 4207–4221.PubMedGoogle Scholar
  8. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249. doi:10.1093/cercor/bhi007 PubMedCrossRefGoogle Scholar
  9. Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50, 1148–1167. doi:10.1016/j.neuroimage.2009.12.112 PubMedCrossRefGoogle Scholar
  10. Castelli, F., Happé, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12, 314–325.PubMedCrossRefGoogle Scholar
  11. Colby, C. L. (1998). Action-oriented spatial reference frames in cortex. Neuron, 20, 15–24.PubMedCrossRefGoogle Scholar
  12. Dayan, E., Casile, A., Levit-Binnun, N., Giese, M. A., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: evidence for action-perception coupling. Proceedings of the National Academy of Sciences, 104, 20582–20587.CrossRefGoogle Scholar
  13. Downing, P. E., Jiang, Y. H., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293, 2470–2473.PubMedCrossRefGoogle Scholar
  14. Downing, P. E., & Peelen, M. V. (2011). The role of occipitotemporal body-selective regions in person perception. Cognitive Neuroscience, 2, 186–203.PubMedCrossRefGoogle Scholar
  15. Ferri, S., Kolster, H., Jastorff, J., & Orban, G. A. (2013). The overlap of the EBA and the MT/V5 cluster. NeuroImage, 66, 412–425.CrossRefGoogle Scholar
  16. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667.PubMedCrossRefGoogle Scholar
  17. Frith, C. D., & Frith, U. (1999). Interacting minds—A biological basis. Science, 286, 1692–1695. doi:10.1126/science.286.5445.1692 PubMedCrossRefGoogle Scholar
  18. Frith, U., & Frith, C. (2010). The social brain: Allowing humans to boldly go where no other species has been. Philosophical Transaction of the Royal Society B, 365, 165–176. doi:10.1098/rstb.2009.0160 CrossRefGoogle Scholar
  19. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.PubMedCrossRefGoogle Scholar
  20. Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179–192. doi:10.1038/nrn1057 PubMedCrossRefGoogle Scholar
  21. Gilaie-Dotan, S., Bentin, S., Harel, M., Rees, G., & Saygin, A. P. (2011). Normal form from biological motion despite impaired ventral stream function. Neuropsychologia, 49, 1033–1043.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Graziano, M. S. A., & Gross, C. G. (1998). Spatial maps for the control of movement. Current Opinion in Neurobiology, 8, 195–201.PubMedCrossRefGoogle Scholar
  23. Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 7, 555–562.PubMedCrossRefGoogle Scholar
  24. Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41, 1409–1422.PubMedCrossRefGoogle Scholar
  25. Grosbras, M. H., Beaton, S., & Eickhoff, S. B. (2012). Brain regions involved in human movement perception: A quantitative voxel-based meta-analysis. Human Brain Mapping, 33, 431–454.PubMedCrossRefGoogle Scholar
  26. Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35, 1167–1175.PubMedCrossRefGoogle Scholar
  27. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720. doi:10.1162/089892900562417 PubMedCrossRefGoogle Scholar
  28. Hard, B. M., Recchia, G., & Tversky, B. (2011). The shape of action. Journal of Experimental Psychology. General, 140, 586–604.PubMedCrossRefGoogle Scholar
  29. Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. The American Journal of Psychology, 57, 243–259.CrossRefGoogle Scholar
  30. Huk, A. C., & Heeger, D. J. (2002). Pattern-motion responses in human visual cortex. Nature Neuroscience, 5, 72–75.PubMedCrossRefGoogle Scholar
  31. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7, 942–951. doi:10.1038/nrn2024 PubMedCrossRefGoogle Scholar
  32. Jastorff, J., & Orban, G. A. (2009). Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. Journal of Neuroscience, 29, 7315–7329. doi:10.1523/JNEUROSCI.4870-08.2009 PubMedCrossRefGoogle Scholar
  33. Johnson, K. L., McKay, L. S., & Pollick, F. E. (2011). He throws like a girl (but only when he’s sad): Emotion affects sex-decoding of biological motion displays. Cognition, 119, 265–280.PubMedCrossRefGoogle Scholar
  34. Jola, C., McAleer, P., Grosbras, M., Love, S. A., Morison, G., & Pollick, F. E. (2013). Uni- and multisensory brain areas are synchronized across spectators when watching unedited dance recordings. Perception, 4, 1–20.CrossRefGoogle Scholar
  35. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.PubMedGoogle Scholar
  36. Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11, 417–428.PubMedCrossRefGoogle Scholar
  37. Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing sex of a walker from a dynamic point-light display. Perception & Psychophysics, 21, 575–580. doi:10.3758/BF03198740 CrossRefGoogle Scholar
  38. Lange, J., & Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26, 2894–2906.PubMedCrossRefGoogle Scholar
  39. Mather, G., & Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society B, 258, 273–279.CrossRefGoogle Scholar
  40. McAvoy, M., Ollinger, J. M., & Buckner, R. L. (2001). Cluster size thresholds for assessment of significant activation in fMRI. NeuroImage, 13, S198.CrossRefGoogle Scholar
  41. McCarthy, G., Puce, A., Gore, J., & Allison, T. (1997). Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 9, 605–610.PubMedCrossRefGoogle Scholar
  42. Newtson, D. (1976). Foundations of attribution: The perception of ongoing behavior. In J. H. Harvey, W. J. Ickes, & R. F. Kidd (Eds.), New directions in attribution research (pp. 223–248). Hillsdale, NJ: Erlbaum.Google Scholar
  43. Peelen, M. V., & Downing, P. E. (2005). Selectivity for the human body in the fusiform gyrus. Journal of Neurophysiology, 93, 603–608.PubMedCrossRefGoogle Scholar
  44. Pollick, F. E., Kay, J. W., Heim, K., & Stringer, R. (2005). Gender recognition from point-light walkers. Journal of Experimental Psychology. Human Perception and Performance, 31, 1247–1265.PubMedCrossRefGoogle Scholar
  45. Pollick, F. E., Paterson, H. M., Bruderlin, A., & Sanford, A. J. (2001). Perceiving affect from arm movement. Cognition, 82, B51–B61.PubMedCrossRefGoogle Scholar
  46. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.PubMedCrossRefGoogle Scholar
  47. Schubotz, R. I., Korb, F. M., Schiffer, A. M., Stadler, W., & von Cramon, D. Y. (2012). The fraction of an action is more than a movement: Neural signatures of event segmentaiton in fMRI. NeuroImage, 61, 1195–1205. doi:10.1016/j.neuroimage.2012.04.008 PubMedCrossRefGoogle Scholar
  48. Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain, 1, 15–36.CrossRefGoogle Scholar
  49. Speer, N. K., Reynolds, J. R., & Zacks, J. M. (2007). Human brain activity time-locked to narrative event boundaries. Psychological Science, 18, 449–455.PubMedCrossRefGoogle Scholar
  50. Swallow, K. M., Braver, T. S., Snyder, A. Z., Speer, N. K., & Zacks, J. M. (2003). Reliability of functional localization using fMRI. NeuroImage, 20, 1561–1577.PubMedCrossRefGoogle Scholar
  51. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—An approach to cerebral imaging. Stuttgart, Germany: Thieme.Google Scholar
  52. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., & Belliveau, J. W. (1995). Functional analysis of human MT and related cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215–3230.PubMedGoogle Scholar
  53. Troje, N. F. (2002). Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision, 2(5), 371–387. doi:10.1167/2.5.2 PubMedCrossRefGoogle Scholar
  54. Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48, 564–584.PubMedCrossRefGoogle Scholar
  55. Vizioli, L., Smith, F., Muckli, L., & Caldara, R. (2010, June). Face encoding representations are shaped by race. Paper presented at the 16th Annual Meeting of the Organization for Human Brain Mapping, Barcelona, Spain.Google Scholar
  56. Wagner, D. D., Dal Cin, S., Sargent, J. D., Kelley, W. M., & Heatherton, T. F. (2011). Spontaneous action representation in smokers when watching movie characters smoke. Journal of Neuroscience, 31, 894–898.PubMedCrossRefGoogle Scholar
  57. Weiner, K. S., & Grill-Spector, K. (2011). Not one extrastriate body area: Using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex. NeuroImage, 56, 2183–2199.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Willems, R. M., & Hagoort, P. (2009). Hand preference influences neural correlates of action observation. Brain Research, 1269, 90–104.PubMedCrossRefGoogle Scholar
  59. Yarkoni, T., Speer, N. K., Balota, D. A., McAvoy, M. P., & Zacks, J. M. (2008). Pictures of a thousand words: Investigating the neural mechanisms of reading with extremely rapid event-related fMRI. NeuroImage, 42, 973–987. doi:10.1016/j.neuroimage.2008.04.258 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Zacks, J. M. (2004). Using movement and intentions to understand simple events. Cognitive Science, 28, 979–1008.CrossRefGoogle Scholar
  61. Zacks, J. M., Kumar, S., Abrams, R. A., & Mehta, R. (2009). Using movement and intentions to understand human activity. Cognition, 112, 201–216.PubMedCrossRefGoogle Scholar
  62. Zacks, J. M., Swallow, K. M., Vettel, J. M., & McAvoy, M. P. (2006). Visual motion and the neural correlates of event perception. Brain Research, 1076, 150–162.PubMedCrossRefGoogle Scholar
  63. Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology. General, 130, 29–58. doi:10.1037/0096-3445.130.1.29 PubMedCrossRefGoogle Scholar
  64. Zeki, S. M. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. The Journal of Physiology, 236, 549–573.PubMedCentralPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Phil McAleer
    • 1
    • 2
  • Frank E. Pollick
    • 2
  • Scott A. Love
    • 3
  • Frances Crabbe
    • 1
  • Jeffrey M. Zacks
    • 4
  1. 1.Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
  2. 2.School of PsychologyUniversity of GlasgowGlasgowUK
  3. 3.Department of Psychological and Brain SciencesIndiana University BloomingtonBloomingtonUSA
  4. 4.Departments of Psychology and RadiologyWashington UniversitySt. LouisUSA

Personalised recommendations