Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 13, Issue 4, pp 703–713 | Cite as

Alternative-based thresholding with application to presurgical fMRI

  • Joke Durnez
  • Beatrijs Moerkerke
  • Andreas Bartsch
  • Thomas E. Nichols
Article

Abstract

Functional magnetic reasonance imaging (fMRI) plays an important role in pre-surgical planning for patients with resectable brain lesions such as tumors. With appropriately designed tasks, the results of fMRI studies can guide resection, thereby preserving vital brain tissue. The mass univariate approach to fMRI data analysis consists of performing a statistical test in each voxel, which is used to classify voxels as either active or inactive—that is, related, or not, to the task of interest. In cognitive neuroscience, the focus is on controlling the rate of false positives while accounting for the severe multiple testing problem of searching the brain for activations. However, stringent control of false positives is accompanied by a risk of false negatives, which can be detrimental, particularly in clinical settings where false negatives may lead to surgical resection of vital brain tissue. Consequently, for clinical applications, we argue for a testing procedure with a stronger focus on preventing false negatives. We present a thresholding procedure that incorporates information on false positives and false negatives. We combine two measures of significance for each voxel: a classical p-value, which reflects evidence against the null hypothesis of no activation, and an alternative p-value, which reflects evidence against activation of a prespecified size. This results in a layered statistical map for the brain. One layer marks voxels exhibiting strong evidence against the traditional null hypothesis, while a second layer marks voxels where activation cannot be confidently excluded. The third layer marks voxels where the presence of activation can be rejected.

Keywords

fMRI Power False negative errors Multiple testing Pre-surgical fMRI 

References

  1. Bartsch, A. J., Homola, G., Biller, A., Solymosi, L., & Bendszus, M. (2006). Diagnostic functional MRI: Illustrated clinical applications and decision-making. Journal of Magnetic Resonance Imaging: JMRI, 23(6), 921–932.PubMedCrossRefGoogle Scholar
  2. Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23(2), 137–152.PubMedCrossRefGoogle Scholar
  3. Chumbley, J., Worsley, K., Flandin, G., & Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage, 49(4), 3057–3064.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage, 44(1), 62–70.PubMedCrossRefGoogle Scholar
  5. Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses. Journal of Neuroscience Methods, 118(2), 115–128.PubMedCrossRefGoogle Scholar
  6. Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. (1991). Comparing functional (PET) images: The assessment of significant change. Journal of Cerebral Blood Flow and Metabolism, 11(4), 690–699.PubMedCrossRefGoogle Scholar
  7. Genovese, C. R., Lazar, N. A., & Nichols, T. E. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870–878.PubMedCrossRefGoogle Scholar
  8. Gorgolewski, K. J., Storkey, A. J., Bastin, M. E., & Pernet, C. R. (2012). Adaptive thresholding for reliable topological inference in single subject fMRI analysis. Frontiers in Human Neuroscience, 6(245), 1–14.Google Scholar
  9. Haller, S., & Bartsch, A. J. (2009). Pitfalls in FMRI. European Radiology, 19(11), 2689–2706.PubMedCrossRefGoogle Scholar
  10. Hayasaka, S., Peiffer, A. M., Hugenschmidt, C. E., & Laurienti, P. J. (2007). Power and sample size calculation for neuroimaging studies by non-central random field theory. NeuroImage, 37(3), 721–730.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Johnson, T. D., Liu, Z., Bartsch, A. J., & Nichols, T. E. (2012). A Bayesian non-parametric Potts model with application to pre-surgical FMRI data. Statistical Methods in Medical Research.Google Scholar
  12. Lieberman, M. D., & Cunningham, W. A. (2009). Type I and type II error concerns in fMRI research: Re-balancing the scale. Social Cognitive and Affective Neuroscience, 4(4), 423–428.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Logan, B. R., & Rowe, D. B. (2004). An evaluation of thresholding techniques in fMRI analysis. NeuroImage, 22(1), 95–108.PubMedCrossRefGoogle Scholar
  14. Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46, 806–834.CrossRefGoogle Scholar
  15. Moerkerke, B., Goetghebeur, E., De Riek, J., & Roldan-Ruiz, I. (2006). Significance and impotence: Towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding. Journal of the Royal Statistical Society: Series A (Statistics in Society), 169(1), 61–79.CrossRefGoogle Scholar
  16. Mumford, J. A., & Nichols, T. E. (2008). Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage, 39(1), 261–268.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Richardson, M. P., Strange, B. A., Thompson, P. J., Baxendale, S. A., Duncan, J. S., & Dolan, R. J. (2004). Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain: A Journal of Neurology, 127(Pt 11), 2419–2426.CrossRefGoogle Scholar
  18. Schmidt, F., & Hunter, J. (2002). Are there benefits from NHST. American Psychologist, 57(1), 65–66.PubMedCrossRefGoogle Scholar
  19. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., . . . Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23 Suppl 1, S208–19.Google Scholar
  20. Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101.CrossRefGoogle Scholar
  21. Van Horn, J. D., Ellmore, T. M., Esposito, G., & Berman, K. F. (1998). Mapping voxel-based statistical power on parametric images. NeuroImage, 7(2), 97–107.PubMedCrossRefGoogle Scholar
  22. Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4(3), 274–290.CrossRefGoogle Scholar
  23. Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73.PubMedCrossRefGoogle Scholar
  24. Zarahn, E., & Slifstein, M. (2001). A reference effect approach for power analysis in fMRI. NeuroImage, 14(3), 768–779.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Joke Durnez
    • 1
  • Beatrijs Moerkerke
    • 1
  • Andreas Bartsch
    • 2
    • 3
  • Thomas E. Nichols
    • 4
  1. 1.Department of Data AnalysisGhent UniversityGhentBelgium
  2. 2.FMRIB CentreOxford UniversityOxfordUnited Kingdom
  3. 3.Department of NeuroradiologyUniversity of HeidelbergHeidelbergGermany
  4. 4.Department of Statistics & Warwick Manufacturing GroupUniversity of WarwickCoventryUK

Personalised recommendations