Cognitive, Affective, & Behavioral Neuroscience

, Volume 13, Issue 4, pp 930–943 | Cite as

Discrimination of personally significant from nonsignificant sounds: A training study

  • Anja RoyeEmail author
  • Thomas Jacobsen
  • Erich Schröger


Discriminating personally significant from nonsignificant sounds is of high behavioral relevance and appears to be performed effortlessly outside of the focus of attention. Although there is no doubt that we automatically monitor our auditory environment for unexpected, and hence potentially significant, events, the characteristics of detection mechanisms based on individual memory schemata have been far less explored. The experiments in the present study were designed to measure event-related potentials (ERPs) sensitive to the discrimination of personally significant and nonsignificant nonlinguistic sounds. Participants were presented with random sequences of acoustically variable sounds, one of which was associated with personal significance for each of the participants. In Experiment 1, each participant’s own mobile SMS ringtone served as his or her significant sound. In Experiment 2, a nonsignificant sound was instead trained to become personally significant to each participant over a period of one month. ERPs revealed differential processing of personally significant and nonsignificant sounds from about 200 ms after stimulus onset, even when the sounds were task-irrelevant. We propose the existence of a mechanism for the detection of significant sounds that does not rely on the detection of acoustic deviation. From a comparison of the results from our active- and passive-listening conditions, this discriminative process based on individual memory schemata seems to be obligatory, whereas the impact of individual memory schemata on further stages of auditory processing may require top-down guidance.


Novelty Deviance detection Significance Familiarity Auditory processing ERP MMN 


Author note

A.R.’s work was supported by a PhD fellowship from the Evangelisches Studienwerk e.V. Villigst. E.S.’s work was supported by a DFG-Reinhart-Koselleck project. We are grateful to Martin Reiche for his help in data collection, and thank the anonymous reviewers, who gave helpful comments on this article and on previous versions of the manuscript.


  1. Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). The time course of neural changes underlying auditory perceptual learning. Learning and Memory, 9, 138–150.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Beauchemin, M., De Beaumont, L., Vannasing, P., Turcotte, A., Arcand, C., Belin, P., & Lassonde, M. (2006). Electrophysiological markers of voice familiarity. European Journal of Neuroscience, 23, 3081–3086. doi: 10.1111/j.1460-9568.2006.04856.x CrossRefPubMedGoogle Scholar
  3. Bendixen, A., SanMiguel, I., & Schröger, E. (2012). Early electrophysiological indicators for predictive processing in audition: A review. International Journal of Psychophysiology, 83, 120–131. doi: 10.1016/j.ijpsycho.2011.08.003 CrossRefPubMedGoogle Scholar
  4. Bosnyak, D. J., Eaton, R. A., & Roberts, L. E. (2004). Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cerebral Cortex, 14, 1088–1099.CrossRefPubMedGoogle Scholar
  5. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
  6. Comerchero, M. D., & Polich, J. (1999). P3a and P3b from typical auditory and visual stimuli. Clinical Neurophysiology, 110, 24–30.CrossRefPubMedGoogle Scholar
  7. Czigler, I., Cox, T. J., Gyimesi, K., & Horvath, J. (2007). Event-related potential study to aversive auditory stimuli. Neuroscience Letters, 420, 251–256.CrossRefPubMedGoogle Scholar
  8. Elaad, E., & Ben-Shakhar, G. (1989). Effects of motivation and verbal-response type on psychophysiological detection of information. Psychophysiology, 26, 442–451. doi: 10.1111/j.1469-8986.1989.tb01950.x CrossRefPubMedGoogle Scholar
  9. Escera, C., Alho, K., Schröger, E., & Winkler, I. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology & Neuro-Otology, 5, 151–166.CrossRefGoogle Scholar
  10. Escera, C., Yago, E., Corral, M. J., Corbera, S., & Nuñez, M. I. (2003). Attention capture by auditory significant stimuli: Semantic analysis follows attention switching. European Journal of Neuroscience, 18, 2408–2412.CrossRefPubMedGoogle Scholar
  11. Frangos, J., Ritter, W., & Friedman, D. (2005). Brain potentials to sexually suggestive whistles show meaning modulates the mismatch negativity. NeuroReport, 16, 1313–1317.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Gati, I., & Ben-Shakhar, G. (1990). Novelty and significance in orientation and habituation: A feature-matching approach. Journal of Experimental Psychology, 119, 251–263.CrossRefPubMedGoogle Scholar
  13. Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8, 145–146. doi: 10.1038/nn1392 CrossRefPubMedGoogle Scholar
  14. Gronau, N., Cohen, A., & Ben-Shakhar, G. (2003). Dissociations of personally significant and task-relevant distractors inside and outside the focus of attention: A combined behavioral and psychophysiological study. Journal of Experimental Psychology. General, 132, 512–529. doi: 10.1037/0096-3445.132.4.512 CrossRefPubMedGoogle Scholar
  15. Herrmann, C. S., Munk, M. H., & Engel, A. K. (2004). Cognitive functions of gammaband activity: Memory match and utilization. Trends in Cognitive Sciences, 8, 347–355.CrossRefPubMedGoogle Scholar
  16. Holeckova, I., Fischer, C., Giard, M. H., Delpuech, C., & Morlet, D. (2006). Brain responses to a subject’s own name uttered by a familiar voice. Brain Research, 1082, 142–152.CrossRefPubMedGoogle Scholar
  17. Jacobsen, T., Schröger, E., Winkler, I., & Horvàth, J. (2005). Familiarity affects the processing of task-irrelevant auditory deviance. Journal of Cognitive Neuroscience, 17, 1704–1713.CrossRefPubMedGoogle Scholar
  18. Johnson, R. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23, 367–384.CrossRefPubMedGoogle Scholar
  19. Junghöfer, M., Bradley, M. M., Elbert, T. R., & Lang, P. J. (2001). Fleeting images: A new look at early emotion discrimination. Psychophysiology, 38, 175–178.CrossRefPubMedGoogle Scholar
  20. Kiefer, M., & Martens, U. (2010). Attentional sensitization of unconscious cognition: Task sets modulate subsequent masked semantic priming. Journal of Experimental Psychology. General, 139, 464–489.CrossRefPubMedGoogle Scholar
  21. Kirmse, U., Jacobsen, T., & Schröger, E. (2009). Familiarity affects environmental sound processing outside the focus of attention: An event-related potential study. Clinical Neurophysiology, 120, 887–896.CrossRefPubMedGoogle Scholar
  22. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Reviews in Neuroscience, 23, 155–184. doi: 10.1146/annurev.neuro.23.1.155 CrossRefGoogle Scholar
  23. Lenz, D., Schadow, J., Thaerig, S., Busch, N. A., & Herrmann, C. S. (2007). What’s that sound? Matches with auditory long-term memory induce gamma activity in human EEG. International Journal of Psychophysiology, 64, 31–38.CrossRefPubMedGoogle Scholar
  24. Lipski, S. C., & Mathiak, K. (2008). Auditory mismatch negativity for speech sound contrasts is modulated by language context. NeuroReport, 19, 1079–1083.CrossRefPubMedGoogle Scholar
  25. Menning, H., Roberts, L. E., & Pantev, C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport, 11, 817–822.CrossRefPubMedGoogle Scholar
  26. Mittermeier, V., Leicht, G., Karch, S., Hegerl, U., Möller, H. J., Pogarell, O., & Mulert, C. (2011). Attention to emotion: Auditory-evoked potentials in an emotional choice reaction task and personality traits as assessed by the NEO FFI. European Archives of Psychiatry and Clinical Neuroscience, 261, 111–120. doi: 10.1007/s00406-010-0127-9 CrossRefPubMedGoogle Scholar
  27. Moray, N. (1959). Attention in dichotic-listening—Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11, 56–60.CrossRefGoogle Scholar
  28. Müller, M. M., Andersen, S. K., & Keil, A. (2008). Time course of competition for visual processing resources between emotional pictures and foreground task. Cerebral Cortex, 18, 1892–1899. doi: 10.1093/cercor/bhm215 CrossRefPubMedGoogle Scholar
  29. Müller-Gass, A., Roye, A., Kirmse, U., Saupe, K., Jacobsen, T., & Schröger, E. (2007). Automatic detection of lexical change: An auditory event-related potential study. NeuroReport, 18, 1747–1751.CrossRefPubMedGoogle Scholar
  30. Müller-Gass, A., Stelmack, R. M., & Campbell, K. B. (2006). The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the mismatch negativity. Brain Research, 1078, 112–130.CrossRefPubMedGoogle Scholar
  31. Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology, 38, 1–21.CrossRefPubMedGoogle Scholar
  32. Näätänen, R., Kujala, T., & Winkler, I. (2011). Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology, 48, 4–22. doi: 10.1111/j.1469-8986.2010.01114.x CrossRefPubMedGoogle Scholar
  33. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24, 375–425.CrossRefPubMedGoogle Scholar
  34. Ofek, E., & Pratt, H. (2005). Neurophysiological correlates of subjective significance. Clinical Neurophysiology, 116, 2354–2362.CrossRefPubMedGoogle Scholar
  35. Öhman, A. (1979). The orienting response, attention, and learning: An information processing perspective. In H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.), The orienting reflex in humans (pp. 443–472). Hillsdale, NJ: Erlbaum.Google Scholar
  36. Oppermann, F., Hassler, U., Jescheniak, J. D., & Gruber, T. (2012). The rapid extraction of gist—Early neural correlates of high-level visual processing. Journal of Cognitive Neuroscience, 24, 521–529.CrossRefPubMedGoogle Scholar
  37. Ousdal, O. T., Jensen, J., Server, A., Hariri, A. R., Nakstad, P. H., & Andreassen, O. A. (2008). The human amygdala is involved in general behavioral relevance detection: Evidence from an event-related functional magnetic resonance imaging Go–NoGo task. Neuroscience, 156, 450–455. doi: 10.1016/j.neuroscience.2008.07.066 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Pantev, C., Engelien, A., Candia, V., & Elbert, T. (2001a). Representational cortex in musicians. Plastic alterations in response to musical practice. Annals of the New York Academy of Sciences, 930, 300–314.CrossRefPubMedGoogle Scholar
  39. Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811–814.CrossRefPubMedGoogle Scholar
  40. Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001b). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 12, 169–174.CrossRefPubMedGoogle Scholar
  41. Parmentier, F. B. R., Turner, J., & Perez, L. (2013). A dual contribution to the involuntary semantic processing of unexpected spoken words. Journal of Experimental Psychology. General. doi: 10.1037/a0031550. Advance online publication.PubMedGoogle Scholar
  42. Perrin, F., Garcia-Larrea, L., Mauguiere, F., & Bastuji, H. (1999). A differential brain response to the subject’s own name persists during sleep. Clinical Neurophysiology, 110, 2153–2164.CrossRefPubMedGoogle Scholar
  43. Perrin, F., Maquet, P., Peigneux, P., Ruby, P., Degueldre, C., Balteau, E., & Laureys, S. (2005). Neural mechanisms involved in the detection of our first name: A combined ERPs and PET study. Neuropsychologia, 43, 12–19. doi: 10.1016/j.neuropsychologia.2004.07.002 CrossRefPubMedGoogle Scholar
  44. Perrin, F., Schnakers, C., Schabus, M., Degueldre, C., Goldman, S., Brédart, S., & Laureys, S. (2006). Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Archives of Neurology, 63, 562–569. doi: 10.1001/archneur.63.4.562 CrossRefPubMedGoogle Scholar
  45. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Rinne, T., Antila, S., & Winkler, I. (2001). Mismatch negativity is unaffected by top-down predictive information. NeuroReport, 12, 2209–2213.CrossRefPubMedGoogle Scholar
  47. Roye, A., Jacobsen, T., & Schröger, E. (2007). Personal significance is encoded automatically by the human brain: An event-related potential study with ringtones. European Journal of Neuroscience, 26, 784–790.CrossRefPubMedGoogle Scholar
  48. Roye, A., Schröger, E., Jacobsen, T., & Gruber, T. (2010). Is my mobile ringing? Evidence for rapid processing of a personally significant sound in humans. Journal of Neuroscience, 30, 7310–7313.CrossRefPubMedGoogle Scholar
  49. Sander, D., Grafman, J., & Zalla, T. (2003). The human amygdala: An evolved system for relevance detection. Reviews in the Neurosciences, 14, 303–316.CrossRefPubMedGoogle Scholar
  50. Sander, K., & Scheich, H. (2001). Auditory perception of laughing and crying activates human amygdala regardless of attentional state. Cognitive Brain Research, 12, 181–198.CrossRefPubMedGoogle Scholar
  51. Scharpf, K. R., Wendt, J., Lotze, M., & Hamm, A. O. (2010). The brain’s relevance detection network operates independently of stimulus modality. Behavioural Brain Research, 210, 16–23.CrossRefPubMedGoogle Scholar
  52. Schröger, E. (2007). Mismatch negativity: A microphone into auditory memory. Journal of Psychophysiology, 21, 138–146.CrossRefGoogle Scholar
  53. Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2003a). Attention and emotion: An ERP analysis of facilitated emotional stimulus processing. NeuroReport, 14, 1107–1110. doi: 10.1097/00001756-200306110-00002 CrossRefPubMedGoogle Scholar
  54. Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2003b). Emotional facilitation of sensory processing in the visual cortex. Psychological Science, 14, 7–13. doi: 10.1111/1467-9280.01411 CrossRefPubMedGoogle Scholar
  55. Schupp, H. T., Stockburger, J., Bublatzky, F., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2007). Explicit attention interferes with selective emotion processing in human extrastriate cortex. BMC Neuroscience, 8, 16.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23, 5545–5552.PubMedGoogle Scholar
  57. Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford, UK: Pergamon.Google Scholar
  58. Sussman, E., & Steinschneider, M. (2006). Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Research, 1075, 165–174.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Sussman, E., Winkler, I., & Schröger, E. (2003). Top-down control over involuntary attention switching in the auditory modality. Psychonomic Bulletin & Review, 10, 630–637.CrossRefGoogle Scholar
  60. Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 242–248.CrossRefGoogle Scholar
  61. Vuilleumier, P., & Huang, Y. M. (2009). Emotional attention: Uncovering the mechanisms of affective biases in perception. Current Directions in Psychological Science, 18, 148–152.CrossRefGoogle Scholar
  62. Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.CrossRefPubMedGoogle Scholar
  63. Woldorff, M. G., & Hillyard, S. A. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalography and Clinical Neurophysiology, 79, 170–191.CrossRefPubMedGoogle Scholar
  64. Wood, N. L., & Cowan, N. (1995). The cocktail party phenomenon revisited: How frequent are attention shifts to one’s name in an irrelevant auditory channel? Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 255–260.PubMedGoogle Scholar
  65. Ylinen, S., & Huotilainen, M. (2007). Is there a direct neural correlate for memory-trace formation in audition? NeuroReport, 18, 1281–1284.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.Institute of PsychologyUniversity of LeipzigLeipzigGermany
  2. 2.Rotman Research InstituteBaycrest Centre for Geriatric CareTorontoCanada
  3. 3.Experimental Psychology UnitHelmut Schmidt University/University of the Federal Armed Forces HamburgHamburgGermany
  4. 4.Institute of Psychology IUniversity of LeipzigLeipzigGermany

Personalised recommendations