Cognitive, Affective, & Behavioral Neuroscience

, Volume 13, Issue 3, pp 575–583 | Cite as

The bivalency effect represents an interference-triggered adjustment of cognitive control: An ERP study

  • Alodie Rey-Mermet
  • Thomas Koenig
  • Beat MeierEmail author


When bivalent stimuli (i.e., stimuli with relevant features for two different tasks) occur occasionally among univalent stimuli, performance is slowed on subsequent univalent stimuli even if they have no overlapping stimulus features. This finding has been labeled the bivalency effect. It indexes an adjustment of cognitive control, but the underlying mechanism is not well understood yet. The purpose of the present study was to shed light on this question, using event-related potentials. We used a paradigm requiring predictable alternations between three tasks, with bivalent stimuli occasionally occurring on one task. The results revealed that the bivalency effect elicited a sustained parietal positivity and a frontal negativity, a neural signature that is typical for control processes implemented to resolve interference. We suggest that the bivalency effect reflects interference, which may be caused by episodic context binding.


Bivalent stimuli Task switching Conflict 


Author Note

This work was supported by a grant from the Janggen-Pöhn Foundation to A. Rey-Mermet, by a grant from the Swiss National Science Foundation (Grant 130104) to B. Meier and by the Center for Cognition Learning and Memory, University of Bern. We thank Julia Kummer and Tullia Padovani for assistance in conducting the experiment and Stefan Walter for helpful comments on an earlier version.


  1. Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Cambridge, MA: MIT Press.Google Scholar
  2. Allport, A., & Wylie, G. (1999). Task-switching: Positive and negative priming of task-set. In G. W. Humphreys, J. Duncan, & A. M. Treisman (Eds.), Attention, space and action: Studies in cognitive neuroscience (pp. 273–296). Oxford, England: Oxford University Press.Google Scholar
  3. Allport, A., & Wylie, G. (2000). Task-switching, stimulus–response bindings, and negative priming. In S. Monsell & J. S. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 35–70). Cambridge, MA: MIT Press.Google Scholar
  4. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. doi: 10.1037//0033-295X.108.3.624 PubMedCrossRefGoogle Scholar
  5. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546. doi: 10.1016/j.tics.2004.10.003 PubMedCrossRefGoogle Scholar
  6. Brass, M., Ullsperger, M., Knoesche, T. R., von Cramon, D. Y., & Phillips, N. A. (2005). Who comes first? The role of the prefrontal and parietal cortex in cognitive control. Journal of Cognitive Neuroscience, 17, 1367–1375. doi: 10.1162/0898929054985400 PubMedCrossRefGoogle Scholar
  7. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. doi: 10.1016/j.tics.2011.12.010 PubMedCrossRefGoogle Scholar
  8. Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in Working Memory (pp. 76–106). Oxford, England: Oxford University Press.Google Scholar
  9. Braverman, A., & Meiran, N. (2010). Task conflict in task switching. Psychological Research, 74, 568–578. doi: 10.1007/s00426-010-0279-2 PubMedCrossRefGoogle Scholar
  10. Clayson, P. E., & Larson, M. J. (2011). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49, 1953–1961. doi: 10.1016/j.neuropsychologia.2011.03.023 PubMedCrossRefGoogle Scholar
  11. Clayson, P. E., & Larson, M. J. (2012). Cognitive performance and electrophysiological indices of cognitive control: A validation study of conflict adaptation. Psychophysiology, 49, 627–637. doi: 10.1111/j.1469-8986.2011.01345.x PubMedCrossRefGoogle Scholar
  12. Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artefacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34, 1443–1449. doi: 10.1016/j.neuroimage.2006.11.004 PubMedCrossRefGoogle Scholar
  13. Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380–390. doi: 10.3758/CABN.7.4.380 CrossRefGoogle Scholar
  14. Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Neuroscience, 12, 374–380. doi: 10.1016/j.tics.2008.07.001 CrossRefGoogle Scholar
  15. Fagot, C. (1994). Chronometric investigations of task switching (Unpublished doctoral dissertation). University of California, San Diego.Google Scholar
  16. Gehring, W. J., Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Probability effects of stimulus evaluation and response processes. Journal of Experimental Psychology. Human Perception and Performance, 18, 198–216. doi: 10.1037//0096-1523.18.1.198 PubMedCrossRefGoogle Scholar
  17. Grundy, J. G., Benarroch, M. F. F., Woodward, T. S., Metzak, P. D., Whitman, J. C., & Shedden, J. M. (2011). The bivalency effect in task switching: Event-related potentials. Human Brain Mapping. doi: 10.1002/hbm.21488 PubMedGoogle Scholar
  18. Guynn, M. J. (2003). A two-process model of strategic monitoring in event-based prospective memory: Activation/retrieval mode and checking. International Journal of Psychology, 38, 245–256. doi: 10.1080/00207590244000205 CrossRefGoogle Scholar
  19. Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494–500. doi: 10.1016/j.tics.2004.08.007 PubMedCrossRefGoogle Scholar
  20. Jersild, A. T. (1927). Mental set and shift. Archives of Psychology, 89, 5–82.Google Scholar
  21. Koenig, T., Kottlow, M., Stein, M., & Melie-Garcia, L. (2011). Ragu: A free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Computational Intelligence and Neuroscience, 2011, 1–14. doi: 10.1155/2011/938925 CrossRefGoogle Scholar
  22. Koenig, T., & Melie-Garcia, L. (2009). Statistical analysis of multichannel scalp field data. In C. M. Michel, T. Koenig, D. Brandeis, L. R. R. Gianotti, & J. Wackermann (Eds.), Electrical Neuroimaging (pp. 169–190). New York: Cambridge University Press.CrossRefGoogle Scholar
  23. Koenig, T., & Melie-Garcia, L. (2010). A method to determine the presence of averaged event-related fields using randomization tests. Brain Topography, 23, 233–242. doi: 10.1007/s10548-010-0142-1 PubMedCrossRefGoogle Scholar
  24. Kopp, B., Rist, F., & Mattler, U. (1996). N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology, 33, 282–294. doi: 10.1111/j.1469-8986.1996.tb00425.x PubMedCrossRefGoogle Scholar
  25. Larson, M. J., Kaufman, D. A. S., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47, 663–670. doi: 10.1016/j.neuropsychologia.2008.11.013 PubMedCrossRefGoogle Scholar
  26. Liotti, M., Woldorff, M. G., Perez, R., III, & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701–711. doi: 10.1016/S0028-3932(99)00106-2 PubMedCrossRefGoogle Scholar
  27. Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C., & Weisbrod, M. (2004). Prefrontal-cingulate activation during executive control: Which comes first? Cognitive Brain Research, 18, 278–287. doi: 10.1016/j.cogbrainres.2003.10.013 PubMedCrossRefGoogle Scholar
  28. Meier, B., & Rey-Mermet, A. (2012a). Beyond feature binding: Interference from episodic context binding creates the bivalency effect in task-switching. Frontiers in Psychology, 3, 386–394. doi: 10.3389/fpsyg.2012.00386 PubMedCrossRefGoogle Scholar
  29. Meier, B., & Rey-Mermet, A. (2012b). Beyond monitoring: After-effects of responding to prospective memory targets. Consciousness and Cognition, 21, 1644–1653. doi: 10.1016/j.concog.2012.09.003 PubMedCrossRefGoogle Scholar
  30. Meier, B., Rey-Mermet, A., Woodward, T. S., Müri, R., & Gutbrod, K. (2013). Episodic context binding in task switching: Evidence from amnesia. Neuropsychologia. doi: 10.1016/j.neuropsychologia.2013.01.025 PubMedGoogle Scholar
  31. Meier, B., Woodward, T. S., Rey-Mermet, A., & Graf, P. (2009). The bivalency effect in task switching: General and enduring. Canadian Journal of Experimental Psychology, 63, 201–210. doi: 10.1037/a0014311 PubMedCrossRefGoogle Scholar
  32. Meiran, N. (2008). The dual implication of dual affordance: Stimulus-task binding and attentional focus of changing during task preparation. Experimental Psychology, 55, 251–259. doi: 10.1027/1618-3169.55.4.251 PubMedCrossRefGoogle Scholar
  33. Meiran, N., Kessler, Y., & Adi-Japha, E. (2008). Control by action representation and input selection (CARIS): A theoretical framework for task switching. Psychological Research, 72, 473–500. doi: 10.1007/s00426-008-0136-8 PubMedCrossRefGoogle Scholar
  34. Notebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111, 275–279. doi: 10.1016/j.cognition.2009.02.002 PubMedCrossRefGoogle Scholar
  35. Notebaert, W., & Verguts, T. (2011). Conflict and error adaptation in the Simon task. Acta Psychologica, 136, 212–216. doi: 10.1016/j.actpsy.2010.05.006 PubMedCrossRefGoogle Scholar
  36. Nùñez Castellar, E., Kühn, S., Fias, W., & Notebaert, W. (2010). Outcome expectancy and not accuracy determines post-error slowing: ERP support. Cognitive, Affective, & Behavioral Neuroscience, 10, 270–278. doi: 10.3758/CABN.10.2.270 CrossRefGoogle Scholar
  37. Rey-Mermet, A., & Meier, B. (2012a). The bivalency effect: Adjustment of cognitive control without response set priming. Psychological Research, 76, 50–59. doi: 10.1007/s00426-011-0322-y PubMedCrossRefGoogle Scholar
  38. Rey-Mermet, A., & Meier, B. (2012b). The bivalency effect: Evidence for flexible adjustment of cognitive control. Journal of Experimental Psychology: Human Performance and Perception, 38, 213–221. doi: 10.1037/a0026024 CrossRefGoogle Scholar
  39. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology. General, 124, 207–231. doi: 10.1037//0096-3445.124.2.207 CrossRefGoogle Scholar
  40. Smith, R. E. (2003). The cost of remembering to remember in event-based prospective memory: Investigating the capacity demands of delayed intention performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 347–361. doi: 10.1037/0278-7393.29.3.347 PubMedCrossRefGoogle Scholar
  41. Spapé, M. M., Band, G. P. H., & Hommel, B. (2011). Compatibility-sequence effects in the Simon task reflect episodic retrieval but not conflict adaptation: Evidence from LRP and N2. Biological Psychology, 88, 116–123. doi: 10.1016/j.biopsycho.2011.07.001 PubMedCrossRefGoogle Scholar
  42. Steinhauser, M., & Hübner, R. (2009). Distinguishing response conflict and task conflict in the Stroop task: Evidence from Ex-Gaussian distribution analysis. Journal of Experimental Psychology. Human Perception and Performance, 35, 1398–1412. doi: 10.1037/a0016467 PubMedCrossRefGoogle Scholar
  43. Strik, W. K., Fallgatter, A. J., Brandeis, D., & Pascual-Marqui, R. D. (1998). Three-dimensional tomography of event-related potentials during response inhibition: Evidence for phasic frontal lobe activation. Electroencephalographie and Clinical Neurophysiology, 108, 406–413. doi: 10.1016/S0168-5597(98)00021-5 CrossRefGoogle Scholar
  44. Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict adaption effect: It’s not just priming. Cognitive, Affective, & Behavioral Neuroscience, 5, 467–472. doi: 10.3758/CABN.5.4.467 CrossRefGoogle Scholar
  45. Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136, 601–626. doi: 10.1037/a0019791 PubMedCrossRefGoogle Scholar
  46. van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77, 477–482. doi: 10.1006/nimg.2001.0923 CrossRefGoogle Scholar
  47. Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413. doi: 10.1016/S0010-0285(02)00520-0 PubMedCrossRefGoogle Scholar
  48. West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 1122–1135. doi: 10.1016/S0028-3932(02)00297-X PubMedCrossRefGoogle Scholar
  49. West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739–748. doi: 10.1111/j.1469-8986.2004.00205.x PubMedCrossRefGoogle Scholar
  50. West, R., Jakubek, K., Wymbs, N., Perry, M., & Moore, K. (2005). Neural correlates of conflict processing. Experimental Brain Research, 167, 38–48. doi: 10.1007/s00221-005-2366-y CrossRefGoogle Scholar
  51. Wirth, M., Horn, H., Koenig, T., Razafimandimby, A., Stein, M., Müller, T., et al. (2008). The early context effect reflects activity in the temporo-prefrontal semantic system: Evidence from electrical neuroimaging of abstract and concrete word reading. NeuroImage, 42, 423–436. doi: 10.1016/j.neuroimage.2008.03.045 PubMedCrossRefGoogle Scholar
  52. Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50, 233–238. doi: 10.1027//1618-3169.50.4.233 PubMedCrossRefGoogle Scholar
  53. Woodward, T. S., Metzak, P. D., Meier, B., & Holroyd, C. B. (2008). Anterior cingulate cortex signals the requirement to break inertia when switching tasks: A study of the bivalency effect. NeuroImage, 40, 1311–1318. doi: 10.1016/j.neuroimage.2007.12.049 PubMedCrossRefGoogle Scholar
  54. Wylie, G., & Allport, A. (2000). Task switching and the measurement of “switch costs”. Psychological Research, 63, 212–233. doi: 10.1007/s004269900003 PubMedCrossRefGoogle Scholar
  55. Wylie, G. R., Javitt, D. C., & Foxe, J. J. (2003). Task switching: A high-density electrical mapping study. NeuroImage, 20, 2322–2342. doi: 10.1016/j.neuroimage.2003.08.010 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.Department of Psychology and Center for Cognition, Learning, and MemoryUniversity of BernBern 9Switzerland
  2. 2.Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, and Center for Cognition, Learning, and MemoryUniversity of BernBernSwitzerland

Personalised recommendations