Evidence for a detrimental relationship between hypertension history, prospective memory, and prefrontal cortex white matter in cognitively normal older adults

  • Michael K. Scullin
  • Brian A. Gordon
  • Jill Talley Shelton
  • Ji hae Lee
  • Denise Head
  • Mark A. McDaniel


Hypertension affects many older adults and is associated with impaired neural and cognitive functioning. We investigated whether a history of hypertension was associated with impairments to prospective memory, which refers to the ability to remember to perform delayed intentions, such as remembering to take medication. Thirty-two cognitively normal older adult participants with or without a history of hypertension (self-reported) performed two laboratory prospective memory tasks, one that relied more strongly on executive control (nonfocal prospective memory) and one that relied more strongly on spontaneous memory retrieval processes (focal prospective memory). We observed hypertension-related impairments for nonfocal, but not focal, prospective memory. To complement our behavioral approach, we conducted a retrospective analysis of available structural magnetic resonance imaging data. Lower white matter volume estimates in the anterior prefrontal cortex were associated with lower nonfocal prospective memory and with a history of hypertension. A history of hypertension may be associated with worsened executive control and lower prefrontal white matter volume. The translational implication is that individuals who must remember to take antihypertensive medications and to monitor their blood pressure at home may be impaired in the executive control process that helps to support these prospective memory behaviors.


Prefrontal cortex Cognitive control Episodic memory Prospective memory Hypertension 


  1. Alonso, A., Beunza, J. J., Delgado-Rodriguez, M., & Martinez-Gonzalez, M. A. (2005). Validation of self reported diagnosis of hypertension in a cohort of university graduates in Spain. BMC Public Health, 5. doi:10.1186/1471-2458-5-94
  2. Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B.,…Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39, 445–459. doi:10.3758/BF03193014 PubMedCrossRefGoogle Scholar
  3. Boller, F., Vrtunski, B., Mack, J. L., & Kim, Y. (1977). Neuropsychological correlates of hypertension. Archives of Neurology, 34, 701–705.PubMedCrossRefGoogle Scholar
  4. Brewer, G. A., Knight, J. B., Marsh, R. L., & Unsworth, N. (2010). Individual differences in event-based prospective memory: Evidence for multiple processes supporting cue detection. Memory & Cognition, 38, 304–311.CrossRefGoogle Scholar
  5. Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., et al. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. NeuroImage, 23, 724–738.PubMedCrossRefGoogle Scholar
  6. Bugg, J. M., McDaniel, M. A., Scullin, M. K., & Braver, T. S. (2011). Revealing list-level control in the stroop task by uncovering its benefits and a cost. Journal of Experimental Psychology. Human Perception and Performance, 37, 1595–1606.PubMedCrossRefGoogle Scholar
  7. Burgess, P. W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49, 2246–2257.PubMedCrossRefGoogle Scholar
  8. Burgess, P. W., Quayle, A., & Frith, C. D. (2001). Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia, 39, 545–555.PubMedCrossRefGoogle Scholar
  9. Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L.,…Roccella, E. J. (2003). The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. Journal of the American Medical Association, 289, 2560–2572.PubMedCrossRefGoogle Scholar
  10. Cooper, T. (1973). Hypertension; the silent killer. The Journal of Practical Nursing, 23, 23–25.PubMedGoogle Scholar
  11. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.PubMedCrossRefGoogle Scholar
  12. de Leeuw, F. E., de Groot, J. C., Oudkerk, M., Witteman, J. C., Hofman, A., van Gijn, J., & Breteler, M. M. (2002). Hypertension and cerebral white matter lesions in a prospective cohort study. Brain, 125, 765–772.PubMedCrossRefGoogle Scholar
  13. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D.,…Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980.Google Scholar
  14. Duchek, J. M., Balota, D. A., & Cortese, M. (2006). Prospective memory and apolipoprotein E in healthy aging and early Alzheimer’s disease. Neuropsychology, 20, 633–644.PubMedCrossRefGoogle Scholar
  15. Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 717–726.PubMedCrossRefGoogle Scholar
  16. Einstein, G. O., & McDaniel, M. A. (2010). Prospective memory and what costs do not reveal about retrieval processes: A commentary on Smith, Hunt, McVay, and McConnell (2007). Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1082–1088.PubMedCrossRefGoogle Scholar
  17. Einstein, G. O., McDaniel, M. A., Thomas, R., Mayfield, S., Shank, H., Morrisette, N., & Breneiser, J. (2005). Multiple processes in prospective memory retrieval: Factors determining monitoring versus spontaneous retrieval. Journal of Experimental Psychology. General, 134, 327–342.Google Scholar
  18. Elias, M. F., Goodell, A. L., & Dore, G. A. (2012). Hypertension and cognitive functioning A perspective in historical context. Hypertension, 60, 260–268.PubMedCrossRefGoogle Scholar
  19. Farmer, M. E., White, L. R., Abbott, R. D., Kittner, S. J., Kaplan, E., Wolz, M. M.,…Wolf, P. A. (1987). Blood pressure and cognitive performance: The Framingham study. American Journal of Epidemiology, 126, 1103–1114.Google Scholar
  20. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H.,…Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22.Google Scholar
  21. Folstein, M. F., Folstein, S., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189–198.CrossRefGoogle Scholar
  22. Gard, P. R. (2010). Non-adherence to antihypertensive medication and impaired cognition: Which comes first? International Journal of Pharmacy Practice, 18, 252–259.PubMedCrossRefGoogle Scholar
  23. Gentile, M. T., Poulet, R., Di Pardo, A., Cifelli, G., Maffei, A., Vecchione, C.,…Lembo, G. (2009). Beta-amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiology of Aging, 30, 222–228.Google Scholar
  24. Giles, W. H., Croft, J. B., Keenan, N. L., Lane, M. J., & Wheeler, F. C. (1995). The validity of self-reported hypertension and correlates of hypertension awareness among blacks and whites within the stroke belt. American Journal of Preventative Medicine, 11, 163–169.Google Scholar
  25. Goldman, N., Lin, I.-F., Weinstein, M., & Lin, Y.-H. (2003). Evaluating the quality of self-reports of hypertension and diabetes. Journal of Clinical Epidemiology, 56, 148–154.PubMedCrossRefGoogle Scholar
  26. Goldstein, I. B., Bartzokis, G., Hance, D. B., & Shapiro, D. (1998). Relationship between blood pressure and subcortical lesions in healthy elderly people. Stroke, 29, 765–772.PubMedCrossRefGoogle Scholar
  27. Gollwitzer, P. M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493–503.CrossRefGoogle Scholar
  28. Gordon, B. A., Shelton, J. T., Bugg, J. M., McDaniel, M. A., & Head, D. (2011). Structural correlates of prospective memory. Neuropsychologia, 49, 3795–3800.PubMedCrossRefGoogle Scholar
  29. Haapanen, N., Miilunpalo, S., Pasanen, M., Oja, P., & Vuori, I. (1997). Agreement between questionnaire data and medical records of chronic diseases in middle-aged and elderly Finnish men and women. American Journal of Epidemiology, 145, 762–769.PubMedCrossRefGoogle Scholar
  30. Hajjar, I., Hart, M., Chen, Y. L., Mack, W., Milberg, W., Chui, H., & Lipsitz, L. (2012). Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: A double-blind randomized clinical trial. Archives of Internal Medicine, 172, 442–444.PubMedCrossRefGoogle Scholar
  31. Harrison, T. L., & Einstein, G. O. (2010). Prospective memory: Are preparatory attentional processes necessary for a single focal cue? Memory & Cognition, 38, 860–867.CrossRefGoogle Scholar
  32. Hollingshead, A. D. B. (1975). Four factor index of social status. New Haven, CT: Yale University.Google Scholar
  33. Igase, M., Kohara, K., & Miki, T. (2012). The association between hypertension and dementia in the elderly. International Journal of Hypertension. doi:10.1155/2012/320648
  34. Insel, K. C., Einstein, G. O., Morrow, D. G., & Hepworth, J. T. (2012). A multifaceted prospective memory intervention to improve medication adherence: Design of a randomized control trial. Contemporary Clinical Trials. doi:10.1016/j.cct.2012.09.005
  35. Jack, C. R., Jr., Twomey, C. K., Zinsmeister, A. R., Sharbrough, F. W., Petersen, R. C., & Cascino, G. D. (1989). Anterior temporal lobes and hippocampal formations: Normative volumetric measurements from MR images in young adults. Radiology, 172, 549–554.PubMedGoogle Scholar
  36. Jacobs, H. I. L., Leritz, E. C., Williams, V. J., Van Boxtel M. P. J., van der Elst, W., Jolles, J.,…Salat, D. H. (2011). Association between white matter microstructure, executive functions, and processing speed in older adults: The impact of vascular health. Human Brain Mapping, doi: 10.1002/hbm.21412
  37. Katai, S., Maruyama, T., Hashimoto, T., & Ikeda, S. (2003). Event based and time based prospective memory in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 74, 704–709.CrossRefGoogle Scholar
  38. Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: Analysis of worldwide data. Lancet, 365, 217–223.PubMedGoogle Scholar
  39. Kehoe, R., Wu, S.-Y., Leske, M. C., & Chylack, L. T. (1994). Comparing self-reported and physician-reported medical history. American Journal of Epidemiology, 139, 813–818.PubMedGoogle Scholar
  40. Kennedy, K. M., & Raz, N. (2009). Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Research, 10, 41–56.CrossRefGoogle Scholar
  41. Kountz, D. S. (2004). Hypertension in ethnic populations: Tailoring treatments. Clinical Cornerstone, 6, 39–46.PubMedCrossRefGoogle Scholar
  42. Liu, L. L., & Park, D. C. (2004). Aging and medical adherence: The use of automatic processes to achieve effortful things. Psychology and Aging, 19, 318–325.PubMedCrossRefGoogle Scholar
  43. Marsh, R. L., Hicks, J. L., Cook, G. I., Hansen, J. S., & Pallos, A. L. (2003). Interference to ongoing activities covaries with the characteristics of an event-based intention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 861–870.PubMedCrossRefGoogle Scholar
  44. McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14, S127–S144.CrossRefGoogle Scholar
  45. McDaniel, M. A., & Einstein, G. O. (2007). Prospective memory: An overview and synthesis of an emerging field. Thousand Oaks, CA: Sage.Google Scholar
  46. McDaniel, M. A., & Einstein, G. O. (2011). The neuropsychology of prospective memory in normal aging: A componential approach. Neuropsychologia, 49, 2147–2155.PubMedCrossRefGoogle Scholar
  47. McDaniel, M. A., Einstein, G. O., & Rendell, P. G. (2008a). The puzzle of inconsistent age-related declines in prospective memory: A multiprocess explanation. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 141–160). Mahwah, NJ: Erlbaum.Google Scholar
  48. McDaniel, M. A., Guynn, M. J., Einstein, G. O., & Breneiser, J. (2004). Cue-focused and reflexive-associative processes in prospective memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 605–614.PubMedCrossRefGoogle Scholar
  49. McDaniel, M. A., Howard, D. C., & Butler, K. M. (2008b). Implementation intentions facilitate prospective memory under high attention demands. Memory & Cognition, 36, 716–724.CrossRefGoogle Scholar
  50. McDaniel, M. A., Shelton, J. T., Breneiser, J. E., Moynan, S., & Balota, D. A. (2011). Focal and nonfocal prospective memory performance in very mild dementia: A signature decline. Neuropsychology, 25, 387–396.PubMedCrossRefGoogle Scholar
  51. Mechaeil, R., Gard, P., Jackson, A., & Rusted, J. (2011). Cognitive enhancement following acute losartan in normotensive young adults. Psychopharmacology, 217, 51–60.PubMedCrossRefGoogle Scholar
  52. Meier, B., von Wartburg, P., Matter, S., Reber, R., & Rothen, N. (2011). Performance predictions improve prospective memory and influence retrieval experience. Canadian Journal of Experimental Psychology, 65, 12–18.PubMedCrossRefGoogle Scholar
  53. Moore, T. L., Killiany, R. J., Rosene, D. L., Prusty, S., Hollander, W., & Moss, M. B. (2002). Impairment of executive function induced by hypertension in the rhesus monkey (Macaca mulatta). Behavioral Neuroscience, 116, 387–396.PubMedCrossRefGoogle Scholar
  54. Morey, R. A., Selgrade, E. S., Wagner, H. R., II, Huettel, S. A., Wang, L., & McCarthy, G. (2010). Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Human Brain Mapping, 31, 1751–1762.PubMedGoogle Scholar
  55. Morris, J. C. (1993). The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43, 2412–2414.PubMedCrossRefGoogle Scholar
  56. Niiranen, T. J., Johansson, J. K., Reunanen, A., & Jula, A. M. (2011). Optimal schedule for home blood pressure measurement based on prognostic data: The Finn-Home study. Hypertension, 57, 1081–1086.PubMedCrossRefGoogle Scholar
  57. Novak, V., & Hajjar, I. (2010). The relationship between blood pressure and cognitive function. Nature Reviews Cardiology, 7, 686–698.PubMedGoogle Scholar
  58. Okura, Y., Urban, L. H., Mahoney, D. W., Jacobsen, S. J., & Rodeheffer, R. J. (2004). Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. Journal of Clinical Epidemiology, 57, 1096–1103.PubMedCrossRefGoogle Scholar
  59. Parker, A., Nagar, B., Thomas, G., Badri, M., & Ntusi, N. B. (2011). Health practitioners’ state of knowledge and challenges to effective management of hypertension at primary level. Cardiovascular Journal of Africa, 22, 186–190.PubMedCrossRefGoogle Scholar
  60. Paul, R. H., Cohen, R. A., & Stern, R. A. (2002). Neurocognitive manifestations of Human Immunodeficiency Virus. CNS Spectrums, 7, 860–866.PubMedGoogle Scholar
  61. Perez, A. (2011). Self-management of hypertension in Hispanic adults. Clinical Nursing Research, 20, 347–365.PubMedCrossRefGoogle Scholar
  62. Pirogovsky, E., Woods, S. P., Filoteo, J. V., & Gilbert, P. E. (2012). Prospective memory deficits are associated with poorer everyday functioning in Parkinson’s disease. Journal of the International Neuropsychological Society, 18, 1–10.CrossRefGoogle Scholar
  63. Prince, M. J., Ebrahim, S., Acosta, D., Ferri, C. P., Guerra, M., Huang, Y.,…Liu, Z. (2012). Hypertension prevalence, awareness, treatment and control among older people in Latin America, India, and China: A 10/66 cross-sectional population-based survey. Journal of Hypertension, 30, 177–187.Google Scholar
  64. Qiu, C., Winblad, B., & Fratiglioni, L. (2005). The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurology, 4, 487–499.PubMedCrossRefGoogle Scholar
  65. Raz, N., Rodgrigue, K. M., & Acker, J. D. (2003). Hypertension and the brain: Vulnerability of the prefrontal regions and executive functions. Behavioral Neuroscience, 117, 1169–1180.PubMedCrossRefGoogle Scholar
  66. Raz, N., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2007). Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology, 21, 149–157.PubMedCrossRefGoogle Scholar
  67. Reynolds, J. R., West, R., & Braver, T. (2009). Distinct neural circuits support transient and sustained processes in prospective memory and working memory. Cerebral Cortex, 19, 1208–1221.PubMedCrossRefGoogle Scholar
  68. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B.,…Turner, M. B. (2012). Executive summary: Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation, 125, 188–197.Google Scholar
  69. Scullin, M. K., & McDaniel, M. A. (2010). Remembering to execute a goal sleep on it! Psychological Science, 21, 1028–1035.PubMedCrossRefGoogle Scholar
  70. Scullin, M. K., McDaniel, M. A., & Einstein, G. O. (2010a). Control of cost in prospective memory: Evidence for spontaneous retrieval processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 190–203.PubMedCrossRefGoogle Scholar
  71. Scullin, M. K., McDaniel, M. A., Shelton, J. T., & Lee, J. H. (2010b). Focal/nonfocal cue effects in prospective memory: Monitoring difficulty or different retrieval processes? Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 736–749.PubMedCrossRefGoogle Scholar
  72. Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351, 1405–1412.PubMedCrossRefGoogle Scholar
  73. Shelton, J. T., Lee, J. H., Scullin, M., Rose, N., Rendell, P., & McDaniel, M. (2012, March). Implementation intentions boost prospective memory in very mildly demented older adults. Paper presented at the Cognitive Aging Conference, Atlanta, GA.Google Scholar
  74. Smith, R. E. (2003). The cost of remembering to remember in event-based prospective memory: Investigating the capacity demands of delayed intention performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 347–361.PubMedCrossRefGoogle Scholar
  75. Swan, G. E., Carmelli, D., & Larue, A. (1998). Systolic blood pressure tracking over 25 to 30 years and cognitive performance in older adults. Stroke, 29, 2334–2340.PubMedCrossRefGoogle Scholar
  76. Tsivgoulis, G., Alexandrov, A. V., Wadley, V. G., Unverzagt, F. W., Go, R. C. P., Moy, C. S.,…Howard, G. (2009). Association of higher diastolic blood pressure levels with cognitive impairment. Neurology, 73, 589–595.PubMedCrossRefGoogle Scholar
  77. Unverzagt, F. W., McClure, L. A., Wadley, V. G., Jenny, N. S., Go, R. C., Cushman, M.,…Howard, G. (2011). Vascular risk factors and cognitive impairment in a stroke-free cohort. Neurology, 77, 1729–1736.Google Scholar
  78. van der Hoeven, N. V., van den Born, B. J., Cammenga, M., & van Montfrans, G. A. (2009). Poor adherence to home blood pressure measurement schedule. Journal of Hypertension, 27, 275–279.PubMedCrossRefGoogle Scholar
  79. Vargas, C. M., Burt, V. L., Gillum, R. F., & Pamuk, E. R. (1997). Validity of self-reported hypertension in the national health and nutrition examination survey III, 1988-1991. Preventative Medicine, 26, 678–685.CrossRefGoogle Scholar
  80. Wechsler, D. (1955). Manual: Wechsler adult intelligence scale. New York: Psychological Corporation.Google Scholar
  81. Woods, S. P., Moran, L. M., Carey, C. L., Dawson, M. S., Iudicello, J. E., Gibson, S.,…Atkinson, J. H. (2008). Prospective memory in HIV infection: Is “remembering to remember” a unique predictor of self-reported medication management? Archives of Clinical Neuropsychology, 23, 257–270.Google Scholar
  82. Wysocki, M., Luo, X., Schmeidler, J., Dahlman, K., Lesser, G. T., Grossman, H.,…Beeri, M. S. (2012). Hypertension is associated with cognitive decline in elderly people at high risk for dementia. American Journal of Geriatric Psychiatry, 20, 179–187.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Michael K. Scullin
    • 1
    • 2
  • Brian A. Gordon
    • 1
  • Jill Talley Shelton
    • 1
    • 3
  • Ji hae Lee
    • 1
  • Denise Head
    • 1
  • Mark A. McDaniel
    • 1
  1. 1.Washington University in St. LouisSt. LouisUSA
  2. 2.Department of NeurologyEmory University School of Medicine, Wesley Woods Heath CenterAtlantaUSA
  3. 3.Lee UniversityClevelandUSA

Personalised recommendations