ERPs and morphological processing: the N400 and semantic composition

Article

Abstract

Both behavioral and electrophysiological evidence suggests that fluent readers decompose morphologically complex words into their constituent parts. Previous event-related potential (ERP) research has been equivocal with regard to whether the N400 component indexes morphological decomposition or the integration of the products of decomposition, a process called semantic composition. In a visual lexical decision task with college students, we recorded ERPs to a well-controlled set of words and nonwords made up of bound morphemes (discern, predict; disject, percern) or free morphemes (cobweb, earring; cobline, bobweb) and monomorphemic control words and nonwords (garlic, minnow; gartus, buzlic). For each of the three morphological types, participants were faster to respond to words than to nonwords. Furthermore, for each of the three morphological types, the amplitude of the N400 was more negative to nonwords than to matched words, an effect indicating that the N400 is more sensitive to the lexicality of the whole stimulus than to the meaningfulness of the constituent parts of the stimulus. The N400 lexicality effect was not significantly different across the three morphological types. To our knowledge, this is the first ERP study to directly compare the processing of printed sets of words composed of bound and free morphemes and monomorphemic control stimuli in order to explore the relative sensitivity of the N400 to morphological decomposition (i.e., the status of the parts) and semantic composition (i.e., the status of the whole). Our findings are consistent with an interpretation of the N400 as an index of a process of semantic composition.

Keywords

ERPs N400 Morphological decomposition Semantic composition 

References

  1. Allen, M., Badecker, W., & Osterhout, L. (2003). Morphological analysis in sentence processing: An ERP study. Language & Cognitive Processes, 18(4), 405–430. doi:10.1080/01690960344000054 CrossRefGoogle Scholar
  2. Amenta, S., & Crepaldi, D. (2012). Morphological processing as we know it: An analytical review of morphological effects in visual word identification. Frontiers in Psychology, 3. doi:10.3389/fpsyg.2012.00232
  3. Andrews, S. (1986). Morphological influences on lexical access: Lexical or nonlexical effects? Journal of Memory and Language, 25, 726–740. doi:10.1016/0749-596X(86)90046-X CrossRefGoogle Scholar
  4. Baayen, H., & Schreuder, R. (1999). War and peace: Morphemes and full forms in a noninteractive parallel dual-route model. Brain and Language, 68, 27–32. doi:10.1006/brln.1999.2069 PubMedCrossRefGoogle Scholar
  5. Badecker, W. (2001). Lexical composition and the production of compounds: Evidence from errors in naming. Language & Cognitive Processes, 16(4), 337–366. doi:10.1080/01690960042000120 CrossRefGoogle Scholar
  6. Bai, C., Bornkessel-Schlesewsky, I., Wang, L., Hung, Y.-C., Schlesewsky, M., & Burkhardt, P. (2008). Semantic composition engenders an N400: Evidence from Chinese compounds. NeuroReport, 19(6), 695–699. doi:10.1097/WNR.0b013e3282fc1eb7 PubMedCrossRefGoogle Scholar
  7. Barber, H., Domínguez, A., & de Vega, M. (2002). Human brain potentials indicate morphological decomposition in visual word recognition. Neuroscience Letters, 318, 149–152. doi:10.1016/S0304-3940(01)02500-9 PubMedCrossRefGoogle Scholar
  8. Barber, H. A., & Kutas, M. (2007). Interplay between computational models and cognitive electrophysiology in visual word recognition. Brain Research Reviews, 53, 98–123. doi:10.1016/j.brainresrev.2006.07.002 PubMedCrossRefGoogle Scholar
  9. Bentin, S. (1987). Event-related potentials, semantic processes, and expectancy factors in word recognition. Brain and Language, 31, 308–327. doi:10.1016/0093-934X(87)90077-0 PubMedCrossRefGoogle Scholar
  10. Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision and semantic priming. Electroencephalography and Clinical Neurophysiology, 60, 343–355. doi:10.1016/0013-4694(85)90008-2 PubMedCrossRefGoogle Scholar
  11. Beyersmann, E., Castles, A., & Coltheart, M. (2011). Early morphological decomposition during visual word recognition: Evidence from masked transposed-letter priming. Psychonomic Bulletin and Review, 18, 937–942. doi:10.3758/s13423-011-0120-y PubMedCrossRefGoogle Scholar
  12. Bloomfield, L. (1933). Language. New York: Henry Holt and Co., p. 161.Google Scholar
  13. Bölte, J., Jansma, B. M., Zilverstand, A., & Zwisterlood, P. (2009). Derivational morphology approached with event-related potentials. The Mental Lexicon, 4(3), 336–353. doi:10.1075/ml.4.3.02bol CrossRefGoogle Scholar
  14. Brown, E., & Hagoort, P. (1993). The processing nature of the N400: Evidence from masked priming. Journal of Cognitive Neuroscience, 5, 34–44. doi:10.1162/jocn.1993.5.1.34 CrossRefGoogle Scholar
  15. Caramazza, A., Laudanna, A., & Romani, C. (1988). Lexical access and inflectional morphology. Cognition, 28, 297–332. doi:10.1016/0010-0277(88)90017-0 PubMedCrossRefGoogle Scholar
  16. Coch, D., & Holcomb, P. J. (2003). The N400 in beginning readers. Developmental Psychobiology, 43(2), 146–166. doi:10.1002/dev.10129 PubMedCrossRefGoogle Scholar
  17. Colé, P., Segui, J., & Taft, M. (1997). Words and morphemes as units for lexical access. Journal of Memory and Language, 37, 312–330. doi:10.1080/01690960701799635 CrossRefGoogle Scholar
  18. Deacon, D., Dynowska, A., Ritter, W., & Grose-Fifer, J. (2004). Repetition and semantic priming of nonwords: Implications for theories of N400 and word recognition. Psychophysiology, 41, 60–74. doi:10.1111/1469-8986.00120 PubMedCrossRefGoogle Scholar
  19. Diependaele, K., Sandra, D., & Grainger, J. (2005). Masked cross-modal morphological priming: unraveling morpho-orthographic and morpho-semantic influences in early word recognition. Language & Cognitive Processes, 20(1–2), 75–114. doi:10.1080/01690960444000197 CrossRefGoogle Scholar
  20. Domínguez, A., Alija, M., Cuetos, F., & de Vega, M. (2006). Event related potentials reveal differences between morphological (prefixes) and phonological (syllables) processing of words. Neuroscience Letters, 408, 10–15. doi:10.1016/j.neulet.2006.06.048 PubMedCrossRefGoogle Scholar
  21. Domínguez, A., de Vega, M., & Barber, H. (2004). Event-related brain potentials elicited by morphological, homographic, orthographic, and semantic priming. Journal of Cognitive Neuroscience, 16(4), 598–608. doi:10.1162/089892904323057326 PubMedCrossRefGoogle Scholar
  22. Domínguez, A., Segui, J., & Cuetos, F. (2002). The time-course of inflexional morphological priming. Linguistics, 40(2), 235–259. doi:10.1515/ling.2002.011 CrossRefGoogle Scholar
  23. Dunn, L. M., & Dunn, L. M. (1997). Peabody picture vocabulary test (3rd ed.). Circle Pines: American Guidance Service.Google Scholar
  24. El Yagoubi, R., Chiarelli, V., Mondini, S., Perrone, G., Danieli, M., & Semenza, C. (2008). Neural correlated of Italian nominal compounds and potential impact of headedness effect: An ERP study. Cognitive Neuropsychology, 25(4), 559–581. doi:10.1080/02643290801900941 PubMedCrossRefGoogle Scholar
  25. Feldman, L. B. (2000). Are morphological effects distinguishable from the effects of shared meaning and shared form? Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 1431–1444. doi:10.1037//O278-7393.26.6.1431 PubMedCrossRefGoogle Scholar
  26. Feldman, L. B., & Basnight-Brown, D. M. (2008). List context fosters semantic processing: Parallels between semantic and morphological facilitation when primes are forward masked. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 680–687. doi:10.1037/0278-7393.34.3.680 PubMedCrossRefGoogle Scholar
  27. Feldman, L. B., O'Connor, P. A., & del Prado Martín, F. M. (2009). Early morphological processing is morphosemantic and not simply morph-orthographic: A violation of form-then-meaning accounts of word recognition. Psychonomic Bulletin & Review, 16(4), 684–691. doi:10.3758/PBR.16.4.684 CrossRefGoogle Scholar
  28. Fiorentino, R., & Poeppel, D. (2007). Compound words and structure in the lexicon. Language & Cognitive Processes, 22(7), 953–1000. doi:10.1080/01690960701190215 CrossRefGoogle Scholar
  29. Friedrich, C. K., Eulitz, C., & Lahiri, A. (2006). Not every pseudoword disrupts word recognition: An ERP study. Behavioral and Brain Functions, 2(36), doi: 10.1186/1744-9081-2-36 Google Scholar
  30. Giraudo, H., & Grainger, J. (2001). Priming complex words: Evidence for supralexical representation of morphology. Psychonomic Bulletin & Review, 8(1), 127–131. doi:10.3758/BF03196148 CrossRefGoogle Scholar
  31. Gonnerman, L. M., Seidenberg, M. S., & Anderson, E. S. (2007). Graded semantic and phonological similarity effects in priming: Evidence for a distributed connectionist approach to morphology. Journal of Experimental Psychology. General, 136(2), 323–345. doi:10.1037/0096-3445.136.2.323 PubMedCrossRefGoogle Scholar
  32. Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass, 3(1), 128–156. doi:10.1111/j.1749-818x.2008.00121.x PubMedCrossRefGoogle Scholar
  33. Gross, M., Say, T., Kleingers, M., Clahsen, H., & Münte, T. F. (1998). Human brain potentials to violations in morphologically complex Italian words. Neuroscience Letters, 241, 83–86. doi:10.1016/S0304-3940(97)00971-3 PubMedCrossRefGoogle Scholar
  34. Holcomb, P. J. (1988). Automatic and attentional processing: An event-related brain potential analysis of semantic priming. Brain and Language, 35(1), 66–85. doi:10.1016/0093-934X(88)90101-0 PubMedCrossRefGoogle Scholar
  35. Holcomb, P. J. (1993). Semantic priming and stimulus degradation: Implications for the role of the N400 in language processing. Psychophysiology, 30, 47–61. doi:10.1111/j.1469-8986.1993.tb03204.x PubMedCrossRefGoogle Scholar
  36. Holcomb, P. J., Grainger, J., & O'Rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience, 14(6), 938–950. doi:10.1162/089892902760191153 PubMedCrossRefGoogle Scholar
  37. Holcomb, P. J., & Neville, H. J. (1990). Auditory and visual semantic priming in lexical decision: A comparison using event-related brain potentials. Language & Cognitive Processes, 5, 281–312. doi:10.1080/01690969008407065 CrossRefGoogle Scholar
  38. Janssen, U., Wiese, R., & Schlesewsky, M. (2006). Electrophysiological responses to violations of morphosyntactic and prosodic features in derived German nouns. Journal of Neurolinguistics, 19, 466–482. doi:10.1016/j.jneuroling.2006.04.002 CrossRefGoogle Scholar
  39. Järvikivi, J., & Pyykkönen, P. (2011). Sub- and supralexical information in early phases of lexical access. Frontiers in Psychology, 2. doi:10.3389/fpsyg.2011.00282
  40. Justus, T., Larsen, J., de Mornay Davies, P., & Swick, D. (2008). Interpreting dissociations between regular and irregular past-tense morphology: Evidence from event-related potentials. Cognitive, Affective, & Behavioral Neuroscience, 8(2), 178–194. doi:10.3758/CABN.8.2.178 CrossRefGoogle Scholar
  41. Justus, T., Yang, J., Larsen, J., de Mornay Davies, P., & Swick, D. (2009). An event-related potential study of cross-modal morphological and phonological priming. Journal of Neurolinguistics, 22, 584–604. doi:10.1016/j.jneuroling.2009.07.001 PubMedCrossRefGoogle Scholar
  42. Kazanina, N., Dukova-Zheleva, G., Dana, G., Kharlamov, V., & Tonciulescu, K. (2008). Decomposition into multiple morphemes during lexical access: A masked priming study of Russian nouns. Language & Cognitive Processes, 23(6), 800–823. doi:10.1080/01690960701799635 CrossRefGoogle Scholar
  43. Kielar, A., & Joanisse, M. F. (2011). The role of semantic and phonological factors in word recognition: An ERP cross-modal priming study of derivational morphology. Neuropsychologia, 49, 161–177. doi:10.1016/j.neuropsychologia.2010.11.027 PubMedCrossRefGoogle Scholar
  44. Koester, D., Gunter, T. C., & Wagner, S. (2007). The morphosyntactic decomposition and semantic composition of German compound words investigated by ERPs. Brain and Language, 102, 64–79. doi:10.1016/j.bandl.2006.09.003 PubMedCrossRefGoogle Scholar
  45. Koester, D., Gunter, T. C., Wagner, S., & Friederici, A. D. (2004). Morphosyntax, prosody, and linking elements: the auditory processing of German nominal compounds. Journal of Cognitive Neuroscience, 16(9), 1647–1668. doi:10.1162/0898929042568541 PubMedCrossRefGoogle Scholar
  46. Koester, D., Holle, H., & Gunter, T. C. (2009). Electrophysiological evidence for incremental lexical-semantic integration in auditory compound comprehension. Neuropsychologia, 47, 1854–1864. doi:10.1016/j.neuropsychologia.2009.02.027 PubMedCrossRefGoogle Scholar
  47. Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463–470. doi:10.1016/S1364-6613(00)01560-6 PubMedCrossRefGoogle Scholar
  48. Laszlo, S., & Federmeier, K. (2011). The N400 as a snapshot of interactive processing: Evidence from regression analyses of orthographic neighbor and lexical associate effects. Psychophysiology, 48, 176–186. doi:10.1111/j.1469-8986.2010.01058.x CrossRefGoogle Scholar
  49. Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9, 920–933. doi:10.1038/nrn2532 PubMedCrossRefGoogle Scholar
  50. Lavric, A., Clapp, A., & Rastle, K. (2007). ERP evidence of morphological analysis from orthography: A masked priming study. Journal of Cognitive Neuroscience, 19(5), 866–877. doi:10.1162/jocn.2007.19.5.866 PubMedCrossRefGoogle Scholar
  51. Lavric, A., Pizzagalli, D., Forstmeier, S., & Rippon, G. (2001). Mapping dissociations in verb morphology. Trends in Cognitive Sciences, 5(7), 301–308. doi:10.1016/S1364-6613(00)01703-4 PubMedCrossRefGoogle Scholar
  52. Lavric, A., Rastle, K., & Clapp, A. (2011). What do fully visible primes and brain potentials reveal about morphological decomposition? Psychophysiology, 48, 676–686. doi:10.1111/j.1469-8986.2010.01125.x PubMedCrossRefGoogle Scholar
  53. Lehtonen, M., Cunillera, T., Rodríguez-Fornells, A., Hultén, A., Tuomainen, J., & Laine, M. (2007). Recognition of morphologically complex words in Finnish: Evidence from event-related potentials. Brain Research, 1148, 123–137. doi:10.1016/j.brainres.2007.02.026 PubMedCrossRefGoogle Scholar
  54. Leinonen, A., Grönholm-Nyman, P., Järvenpää, M., Söderholm, C., Lappi, O., Laine, M., et al. (2009). Neurocognitive processing of auditorily and visually presented inflected words and pseudowords: Evidence from a morphologically rich language. Brain Research, 1275, 54–66. doi:10.1016/j.brainres.2009.03.057 PubMedCrossRefGoogle Scholar
  55. Longtin, C.-M., & Meunier, F. (2005). Morphological decomposition in early visual word processing. Journal of Memory and Language, 53, 26–41. doi:10.1016/j.jml.2005.02.008 CrossRefGoogle Scholar
  56. Longtin, C.-M., Segui, J., & Hallé, P. A. (2003). Morphological priming without morphological relationship. Language & Cognitive Processes, 18(3), 313–334. doi:10.1080/01690960244000036 CrossRefGoogle Scholar
  57. Marslen-Wilson, W., Tyler, L. K., Waksler, R., & Older, L. (1994). Morphology and meaning in the English mental lexicon. Psychological Review, 101(1), 3–33. doi:10.1037/0033-295X.101.1.3 CrossRefGoogle Scholar
  58. Mather, N., Roberts, R., Hammill, D. D., & Allen, E. A. (2008). Test of orthographic competence. Austin: Pro-Ed.Google Scholar
  59. McCormick, S. F., Rastle, K., & Davis, M. H. (2008). Is there a 'fete' in 'fetish'? Effects of orthographic opacity on morpho-orthographic segmentation in visual word recognition. Journal of Memory and Language, 58, 307–326. doi:10.1016/j.jml.2007.05.006 CrossRefGoogle Scholar
  60. McKinnon, R., Allen, M., & Osterhout, L. (2003). Morphological decomposition involving non-productive morphemes: ERP evidence. NeuroReport, 14(6), 883–886. doi:0.1097/01.wnr.0000070192.28954.7e PubMedCrossRefGoogle Scholar
  61. McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. Spencer & A. M. Zwicky (Eds.), The handbook of morphology (pp. 406–427). Malden: Blackwell.Google Scholar
  62. Medler, D. A., & Binder, J. R. (2005). MCWord: An on-line orthographic database of the English language. http://www.neuro.mcw.edu/mcword/
  63. Meunier, F., & Longtin, C.-M. (2007). Morphological decomposition and semantic integration in word processing. Journal of Memory and Language, 56, 457–471. doi:10.1016/j.jml.2006.11.005 CrossRefGoogle Scholar
  64. Morris, J., Frank, T., Grainger, J., & Holcomb, P. J. (2007). Semantic transparency and masked morphological priming: An ERP investigation. Psychophysiology, 44, 506–521. doi:10.1111/j.1469-8986.2007.00538.x PubMedCrossRefGoogle Scholar
  65. Morris, J., Grainger, J., & Holcomb, P. J. (2008). An electrophysiological investigation of early effects of masked morphological priming. Language & Cognitive Processes, 23(7), 1021–1056. doi:10.1080/01690960802299386 CrossRefGoogle Scholar
  66. Morris, J., & Holcomb, P. J. (2005). Event-related potentials to violations of inflectional morphology in English. Cognitive Brain Research, 25, 963–981. doi:10.1016/j.cogbrainres.2005.09.021 PubMedCrossRefGoogle Scholar
  67. Morris, J., Porter, J. H., Grainger, J., & Holcomb, P. J. (2011). Effects of lexical status and morphological complexity in masked priming: An ERP study. Language & Cognitive Processes, 26(4/5/6), 558–599. doi:10.1080/01690965.2010.495482 CrossRefGoogle Scholar
  68. Münte, T. F., Say, T., Clahsen, H., Schiltz, K., & Kutas, M. (1999). Decomposition of morphologically complex words in English: Evidence from event-related brain potentials. Cognitive Brain Research, 7, 241–253. doi:10.1016/S0926-6410(98)00028-7 PubMedCrossRefGoogle Scholar
  69. Newman, A. J., Ullman, M. T., Pancheva, R., Waligura, D. L., & Neville, H. J. (2007). An ERP study of regular and irregular English past tense inflection. NeuroImage, 34, 435–445. doi:10.1016/j.neuroimage.2006.09.007 PubMedCrossRefGoogle Scholar
  70. Nida, E. A. (1976). Morphology: The descriptive analysis of words (2nd ed.). Ann Arbor: The University of Michigan Press.Google Scholar
  71. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi:10.1016/0028-3932(71)90067-4 PubMedCrossRefGoogle Scholar
  72. Penke, M., Weyerts, H., Gross, M., Zander, E., Münte, T. F., & Clahsen, H. (1997). How the brain processes complex words: An event-related potential study of German verb inflections. Cognitive Brain Research, 6, 37–52. doi:10.1016/S0926-6410(97)00012-8 PubMedCrossRefGoogle Scholar
  73. Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72, 184–187. doi:10.1016/0013-4694(89)90180-6 PubMedCrossRefGoogle Scholar
  74. Pylkkänen, L., & Marantz, A. (2003). Tracking the time course of word recognition with MEG. Trends in Cognitive Sciences, 7(5), 187–189.PubMedCrossRefGoogle Scholar
  75. Rastle, K., & Davis, M. H. (2008). Morphological decomposition based on the analysis of orthography. Language & Cognitive Processes, 23(7/8), 942–971. doi:10.1080/01690960802069730 CrossRefGoogle Scholar
  76. Rastle, K., Davis, M. H., Marslen-Wilson, W. D., & Tyler, L. K. (2000). Morphological and semantic effects in visual word recognition: A time-course study. Language & Cognitive Processes, 15(4/5), 507–537. doi:10.1080/01690960050119689 CrossRefGoogle Scholar
  77. Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother's brothel: Morph-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11(6), 1090–1098. doi:10.3758/BF03196742 CrossRefGoogle Scholar
  78. Rodriguez-Fornells, A., Clahsen, H., Lleó, C., Zaake, W., & Münte, T. F. (2001). Event-related brain responses to morphological variations in Catalan. Cognitive Brain Research, 11, 47–58. doi:10.1016/S0926-6410(00)00063-X PubMedCrossRefGoogle Scholar
  79. Rodriguez-Fornells, A., Münte, T. F., & Clahsen, H. (2002). Morphological priming in Spanish verb forms: An ERP repetition priming study. Journal of Cognitive Neuroscience, 14(3), 443–454. doi:10.1162/089892902317361958 PubMedCrossRefGoogle Scholar
  80. Sandra, D. (1994). The morphology of the mental lexicon: Internal word structure viewed from a psycholinguistic perspective. Language & Cognitive Processes, 9(3), 227–269. doi:10.1080/01690969408402119 CrossRefGoogle Scholar
  81. Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the convergence of codes. Trends in Cognitive Sciences, 4(9), 353–361. doi:10.1016/S1364-6613(00)01515-1 PubMedCrossRefGoogle Scholar
  82. Taft, M. (2004). Morphological decomposition and the reverse base frequency effect. The Quarterly Journal of Experimental Psychology, 57A(4), 745–765. doi:10.1080/02724980343000477 Google Scholar
  83. Taft, M., & Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. Journal of Verbal Learning and Verbal Behavior, 14(6), 638–648. doi:10.1016/S0022-5371(75)80051-X CrossRefGoogle Scholar
  84. Van Petten, C., & Kutas, M. (1990). Interactions between sentence context and word frequency in event-related brain potentials. Memory & Cognition, 18, 380–393. doi:10.3758/BF03197127 CrossRefGoogle Scholar
  85. Van Petten, C., & Luka, B. J. (2006). Neural localization of semantic context effects in electromagnetic and hemodynamic studies. Brain and Language, 97, 279–293. doi:10.1016/j.bandl.2005.11.003 PubMedCrossRefGoogle Scholar
  86. Vergara-Martínez, M., Duñabeitia, J. A., Laka, I., & Carreiras, M. (2009). ERP correlates of inhibitory and facilitative effects of constituent frequency in compound word reading. Brain Research, 1257, 53–64. doi:10.1016/j.brainres.2008.12.040 PubMedCrossRefGoogle Scholar
  87. Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). The comprehensive test of phonological processing. Austin: Pro-Ed.Google Scholar
  88. Weyerts, H., Münte, T., Smid, H. G. O. M., & Heinze, H.-J. (1996). Mental representations of morphologically complex words: An event-related potential study with adult humans. Neuroscience Letters, 206, 125–128. doi:10.1016/S0304-3940(96)12442-3 PubMedCrossRefGoogle Scholar
  89. Weyerts, H., Penke, M., Dohrn, U., Clahsen, H., & Münte, T. (1997). Brain potentials indicate differences between regular and irregular German plurals. NeuroReport, 8, 957–962. doi:10.1097/00001756-199703030-00028 PubMedCrossRefGoogle Scholar
  90. Woodcock, R. W. (1987). The Woodcock reading mastery tests - revised. Circle Pines: American Guidance Service.Google Scholar
  91. Zweig, E., & Pylkkänen, L. (2009). A visual M170 effect of morphological complexity. Language & Cognitive Processes, 24(3), 412–439. doi:10.1080/01690960802180420 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2012

Authors and Affiliations

  1. 1.Department of Education, Reading Brains LabDartmouth CollegeHanoverUSA
  2. 2.Department of EducationDartmouth CollegeHanoverUSA

Personalised recommendations