Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Search and concealment strategies in the spatiotemporal domain

  • 32 Accesses


Although visual search studies have primarily focused on search behavior, concealment behavior is also important in the real world. However, previous studies in this regard are limited in that their findings about search and concealment strategies are restricted to the spatial (two-dimensional) domain. Thus, this study evaluated strategies during three-dimensional and temporal (i.e., spatiotemporal) search and concealment to determine whether participants would indicate where they would hide or find a target in a temporal sequence of items. The items were stacked in an upward (Experiments 13) or downward (Experiment 4) direction and three factors were manipulated: scenario (hide vs. seek), partner type (friend vs. foe), and oddball (unique item in the sequence; present vs. absent). Participants in both the hide and seek scenarios frequently selected the oddball for friends but not foes, which suggests that they applied common strategies because the oddball automatically attracts attention and can be readily discovered by friends. Additionally, a principle unique to the spatiotemporal domain was revealed, i.e., when the oddball was absent, participants in both scenarios frequently selected the topmost item of the stacked layer for friends, regardless of temporal order, whereas they selected the first item in the sequence for foes, regardless of the stacked direction. These principles were not affected by visual masking or number of items in the sequence. Taken together, these results suggest that finding and hiding positions in the spatiotemporal domain rely on the presence of salient items and physical accessibility or temporal remoteness, according to partner type.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.


  1. Anderson, G. M., Foulsham, T., Nasiopoulos, E., Chapman, C. S., & Kingstone, A. (2014). Hide and seek: The theory of mind of visual concealment and search. Attention, Perception, & Psychophysics, 76, 907–913. DOI: https://doi.org/10.3758/s13414-014-0675-6

  2. Ariga, A., & Yokosawa, K. (2008). Attentional awakening: Gradual modulation of temporal attention in rapid serial visual presentation. Psychological Research, 72, 192–202. https://doi.org/10.1007/s00426-006-0100-4

  3. Atalay, A. S., Bodur, H. O., & Rasolofoarison, D. (2012). Shining in the center: Central gaze cascade effect on product choice. Journal of Consumer Research, 39, 848–866. DOI: https://doi.org/https://doi.org/10.1086/665984

  4. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443. DOI: https://doi.org/https://doi.org/10.1016/j.tics.2012.06.010

  5. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46. DOI: https://doi.org/https://doi.org/10.1016/0010-0277(85)90022-8

  6. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

  7. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. DOI: https://doi.org/10.1163/156856897X00357

  8. Brodin, A. (2010). The history of scatter hoarding studies. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365, 869–881. DOI: https://doi.org/https://doi.org/10.1098/rstb.2009.0217

  9. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525. DOI: https://doi.org/https://doi.org/10.1016/j.visres.2011.04.012

  10. Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. DOI: https://doi.org/https://doi.org/10.1038/26216

  11. Cornell, E. H., & Heth, C. D. (1986). The spatial organization of hiding and recovery of objects by children. Child Development, 57, 603–615. DOI: https://doi.org/10.2307/1130339

  12. Coull, J. T., Frith, C. D., Büchel, C., & Nobre, A. C. (2000). Orienting attention in time: Behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38, 808–819. DOI: https://doi.org/https://doi.org/10.1016/s0028-3932(99)00132-3

  13. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioural Brain Research, 24, 87–114. DOI: https://doi.org/https://doi.org/10.1017/S0140525X01003922

  14. Dally, J. M., Emery, N. J., & Clayton, N. S. (2004). Cache protection strategies by western scrub–jays (Aphelocoma californica): Hiding food in the shade. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S387–S390. DOI: https://doi.org/https://doi.org/10.1098/rsbl.2004.0190

  15. Dally, J. M., Emery, N. J., & Clayton, N. S. (2005). Cache protection strategies by western scrub-jays, Aphelocoma californica: Implications for social cognition. Animal Behaviour, 70, 1251–1263. DOI: https://doi.org/https://doi.org/10.1016/j.anbehav.2005.02.009

  16. Garamszegi, L. Z., & Eens, M. (2004). The evolution of hippocampus volume and brain size in relation to food hoarding in birds. Ecology Letters, 7, 1216–1224. DOI: https://doi.org/https://doi.org/10.1111/j.1461-0248.2004.00685.x

  17. Grenfell-Essam, R., & Ward, G. (2012). Examining the relationship between free recall and immediate serial recall: The role of list length, strategy use, and test expectancy. Journal of Memory and Language, 67, 106–148. DOI: https://doi.org/10.1016/j.jml.2012.04.004

  18. Hommel, B. (2015). The theory of event coding (TEC) as embodied-cognition framework. Frontiers in Psychology, 6, 1318. DOI: https://doi.org/https://doi.org/10.3389/fpsyg.2015.01318

  19. Hu, Y., Hitch, G. J., Baddeley, A. D., Zhang, M., & Allen, R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. Journal of Experimental Psychology: Human Perception and Performance, 40, 1665–1678. DOI: https://doi.org/https://doi.org/10.1037/a0037163

  20. Kahneman, D., & Tversky, A. (1979). Prospect Theory: An analysis of decision under risk. Econometrica, 47, 263–291.

  21. Kleiner M, Brainard D, Pelli D (2007). What’s new in Psychtoolbox-3? Perception, 36, ECVP Abstract Supplement.

  22. Kranczioch, C., & Bryant, D. (2011). Attentional awakening, resource allocation and the focus of temporal attention Neuroreport, 22, 161–165. DOI: https://doi.org/10.1097/WNR.0b013e3283438b76

  23. Krebs, J. R., Sherry, D. F., Healy, S. D., Perry, V. H., & Vaccarino, A. L. (1989). Hippocampal specialization of food-storing birds. Proceedings of the National Academy of Sciences, 86, 1388–1392. DOI: https://doi.org/https://doi.org/10.1073/pnas.86.4.1388

  24. Lamy, D., Leber, A. B., & Egeth, H. E. (2012). Selective attention. In A. F. Healy, & R. W. Proctor (Eds.), Comprehensive handbook of psychology. Experimental psychology, Vol. 4. (pp. 265–294). New York: Wiley (4th ed., editor-in-chief I. B. Weiner).

  25. Legge, E. L. G., Spetch, M. L., Cenkner, A., Bulitko, V., Anderson, C., Brown, M., & Heth, D. (2012). Not all locations are created equal: Exploring how adults hide and search for objects. PLoS One, 7, e36993. DOI: https://doi.org/https://doi.org/10.1371/journal.pone.0036993

  26. Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J., & Zehetleitner, M. (2016). Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology: Human Perception and Performance, 42, 821–836. DOI: https://doi.org/https://doi.org/10.1037/xhp0000156

  27. Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience & Biobehavioral Reviews, 34, 947–957. DOI: https://doi.org/https://doi.org/10.1016/j.neubiorev.2009.12.005

  28. Mento, G., & Tarantino, V. (2015). Developmental trajectories of internally and externally driven temporal prediction. PLoS One, 10, e0135098. DOI: https://doi.org/https://doi.org/10.1371/journal.pone.0135098

  29. Morton, J., Crowder, R. G., & Prussin, H. A. (1971). Experiments with the stimulus suffix effect. Journal of Experimental Psychology, 91, 169–190. DOI: https://doi.org/https://doi.org/10.1037/h0031844

  30. Murayama, K., & Elliot, A. J. (2012). The competition–performance relation: A meta-analytic review and test of the opposing processes model of competition and performance. Psychological Bulletin, 138, 1035–1070. DOI: https://doi.org/https://doi.org/10.1037/a0028324

  31. Murdock Jr, B. B. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64, 482–488. DOI: http://dx.doi.org/https://doi.org/10.1037/h0045106

  32. Parmentier, F. B., Tremblay, S., & Jones, D. M. (2004). Exploring the suffix effect in serial visuospatial short-term memory. Psychonomic Bulletin & Review, 11, 289–295. DOI: https://doi.org/https://doi.org/10.3758/bf03196572

  33. Pastukhov, A., Vonau, V., Stonkute, S., & Braun, J. (2013). Spatial and temporal attention revealed by microsaccades. Vision Research, 85, 45–57. DOI: https://doi.org/https://doi.org/10.1016/j.visres.2012.11.004

  34. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. DOI: https://doi.org/https://doi.org/10.1163/156856897X00366

  35. Pratt, J., & Abrams, R. A. (1994). Action-centered inhibition: Effects of distractors on movement planning and execution. Human Movement Science, 13, 245–254. DOI: https://doi.org/https://doi.org/10.1016/0167-9457(94)90039-6

  36. Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515–526. DOI: https://doi.org/https://doi.org/10.1017/S0140525X00076512

  37. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–860. DOI: https://doi.org/https://doi.org/10.1037//0096-1523.18.3.849

  38. Rohenkohl, G., Coull, J. T., & Nobre, A. C. (2011). Behavioural dissociation between exogenous and endogenous temporal orienting of attention. PLoS One, 6, e14620. DOI: https://doi.org/https://doi.org/10.1371/journal.pone.0014620

  39. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974. DOI: https://doi.org/https://doi.org/10.1037/a0020541

  40. Smilek, D., Weinheimer, L., Kwan, D., Reynolds, M., & Kingstone, A. (2009). Hiding and finding: The relationship between visual concealment and visual search. Attention, Perception, & Psychophysics, 71, 1793–1806. DOI: https://doi.org/https://doi.org/10.3758/APP.71.8.1793

  41. Solman, G. J., Cheyne, J. A., & Smilek, D. (2012). Found and missed: Failing to recognize a search target despite moving it. Cognition, 123, 100–118. DOI: https://doi.org/10.1016/j.cognition.2011.12.006

  42. Solman, G. J., Hickey, K., & Smilek, D. (2014). Comparing target detection errors in visual search and manually-assisted search. Attention, Perception, & Psychophysics, 76, 945–958. DOI: https://doi.org/10.3758/s13414-014-0641-3

  43. Somerville, S. C., & Capuani-Shumaker, A. (1984). Logical searches of young children in hiding and finding tasks. British Journal of Developmental Psychology, 2, 315–328. DOI: https://doi.org/https://doi.org/10.1111/j.2044-835X.1984.tb00939.x

  44. Street, C. N., Bischof, W. F., & Kingstone, A. (2018). Perspective taking and theory of mind in hide and seek. Attention, Perception, & Psychophysics, 80, 21–26. DOI: https://doi.org/https://doi.org/10.3758/s13414-017-1446-y

  45. Talbot, K. J., Legge, E. L., Bulitko, V., & Spetch, M. L. (2009). Hiding and searching strategies of adult humans in a virtual and a real-space room. Learning and Motivation, 40, 221–233. DOI: https://doi.org/https://doi.org/10.1016/j.lmot.2009.01.003

  46. Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 891–905. DOI: https://doi.org/https://doi.org/10.1037//0096-1523.18.4.891

  47. Tjosvold, D., Johnson, D. W., Johnson, R. T., & Sun, H. (2006). Competitive motives and strategies: Understanding constructive competition. Group Dynamics: Theory, Research, and Practice, 10, 87–89. DOI: http://dx.doi.org/https://doi.org/10.1037/1089-2699.10.2.87

  48. Valenzuela, A., & Raghubir, P. (2009). Position-based beliefs: The center-stage effect. Journal of Consumer Psychology, 19, 185–196. DOI: https://doi.org/https://doi.org/10.1016/j.jcps.2009.02.011

  49. Vander Wall, S. B. (1990). Food hoarding in animals. University of Chicago Press, Chicago, Illinois, USA.

  50. Wellman, H. W., Somerville, S. C., & Haake, R. J. (1979). Development of search procedures in real-life spatial environments. Developmental Psychology, 15, 530–542. DOI: http://dx.doi.org/https://doi.org/10.1037/0012-1649.15.5.530

  51. Wilke, A., Minich, S., Panis, M., Langen, T. A., Skufca, J. D., & Todd, P. M. (2015). A game of hide and seek: Expectations of clumpy resources influence hiding and searching patterns. PLoS One, 10, e0130976. DOI: https://doi.org/https://doi.org/10.1371/journal.pone.0130976

  52. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1, 0058. DOI: https://doi.org/https://doi.org/10.1038/s41562-017-0058

Download references


We would like to thank Rie Kitade for help with data collection. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (17H02648) to JK and Grant-in-Aid for JSPS Fellows from the Japan Society for the Promotion of Science (17J04401) to MI.

Open practices statement

The data and significant program code will be made available after acceptance via the Open Science Framework (https://osf.io/4dtb9/), and none of the experiments were preregistered.

Author information

Correspondence to Motohiro Ito.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Because previous studies have only focused on the spatial factors involved in search and concealment, the present study evaluated strategies for finding and hiding in the spatiotemporal domain. We identified a principle unique to the spatiotemporal domain, in which observers selected targets based on physical accessibility in a cooperative situation and on temporal remoteness in an uncooperative situation. This finding indicates that search and concealment strategies dramatically differ depending on the social context. The present study was the first to reveal that different mechanisms underlie search and concealment in the spatiotemporal domain versus the spatial domain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ito, M., Kawahara, J. Search and concealment strategies in the spatiotemporal domain. Atten Percept Psychophys (2020). https://doi.org/10.3758/s13414-020-01976-6

Download citation


  • Visual search
  • Finding and hiding strategies
  • Spatiotemporal domain