The role of object history in establishing object correspondence

  • Madeleine Y. StepperEmail author
  • Cathleen M. Moore
  • Bettina Rolke
  • Elisabeth Hein


Our visual system establishes correspondence between objects and thus enables us to perceive an object, like a car on the road, as moving continuously. A central question regarding correspondence is whether our visual system uses relatively unprocessed image-based information or further processed object-based information to establish correspondence. While it has been shown that some object-based attributes, such as perceived lightness, can influence correspondence, manipulating object-based information typically involves at least minimal changes of image-based information as well, making it difficult to clearly distinguish between the two levels. To avoid this confound, we manipulated object-based information prior to the task in which we measured correspondence. We used 3-element Ternus displays to assess correspondence. These are ambiguous apparent-motion displays that, depending on how correspondence is solved, are perceived as either one element jumping across the others or as all three elements moving together as a group. We manipulated object-based information by presenting one of two object histories prior to the Ternus display. In one, they moved or changed luminance independently, and thus appeared independent from each other. In the other, the elements moved or changed their luminance all together and thus appeared grouped with each other. We found that the object history did influence how the Ternus displays were perceived, thereby confirming that object-based information alone can be used as a basis for establishing correspondence in line with object-based theories of correspondence.


Perceptual organization Motion: apparent Visual perception 



We thank Jannis Plöger for conducting an experiment for his B.Sc. thesis that greatly informed the experimental choices of Experiment 1. In addition, we thank Maren Klimm and Tana Glemser for help with data collection. We also would like to thank the editor and the two reviewers for their very constructive feedback. This research was supported by DFG project HE 7543/1-1.

Open Practices Statement

None of the data or materials for the experiments reported here is available online, but can be obtained on request. None of the experiments was preregistered.

Supplementary material (28 kb)
ESM 1 (MOV 27.5 kb) (29 kb)
ESM 2 (MOV 29.3 kb) (43 kb)
ESM 3 (MOV 42.9 kb) (60 kb)
ESM 4 (MOV 60.2 kb) (57 kb)
ESM 5 (MOV 56.5 kb) (38 kb)
ESM 6 (MOV 38.4 kb)


  1. Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284–299. CrossRefGoogle Scholar
  2. Aydın, M., Herzog, M. H., & Öğmen, H. (2011). Attention modulates spatio-temporal grouping. Vision Research, 51(4), 435–446. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. CrossRefPubMedGoogle Scholar
  4. Breitmeyer, B. G., & Ritter, A. (1986a). The role of visual pattern persistence in bistable stroboscopic motion. Vision Research, 26(11), 1801–1806. CrossRefPubMedGoogle Scholar
  5. Breitmeyer, B. G., & Ritter, A. (1986b). Visual peristence and the effect of eccentric viewing, element size, and frame duration on bistable stroboscopic motion percepts. Perception & Psychophysis, 39(4), 275–280.CrossRefGoogle Scholar
  6. Chen, L., & Zhou, X. (2011). Visual apparent motion can be modulated by task-irrelevant lexical information. Attention, Perception, & Psychophysics, 73(4), 1010–1015. CrossRefGoogle Scholar
  7. Cohen, J. (1968). Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213–220. CrossRefPubMedGoogle Scholar
  8. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson´s method . Tutorials in Quantitative Methods for Psychology, 1(1), 42–45. CrossRefGoogle Scholar
  9. Dawson, M. R. (1991). The how and why of what went where in apparent motion: Modeling solutions to the motion correspondence problem. Psychological Review, 98(4), 569–603. CrossRefPubMedGoogle Scholar
  10. Enns, J. T., Lleras, A., & Moore, C. M. (2010). Object updating: A force for perceptual continuity and scene stability in human vision. In R. Nijhawan (Ed.), Problems of space and time in perception and action (pp. 503–520). Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  11. Flombaum, J. I., & Scholl, B. J. (2006). A temporal same-object advantage in the tunnel effect: Facilitated change detection for persisting objects. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 840–853. CrossRefPubMedGoogle Scholar
  12. He, Z. J., & Nakayama, K. (1994). Perceived surface shape not features determines correspondence strength in apparent motion. Vision Research, 34(16), 2125–2135. CrossRefPubMedGoogle Scholar
  13. He, Z. J., & Ooi, T. L. (1999). Perceptual organization of apparent motion in the Ternus display. Perception, 28(7), 877–892. CrossRefPubMedGoogle Scholar
  14. Hein, E., & Cavanagh, P. (2012). Motion correspondence in the Ternus display shows feature bias in spatiotopic coordinates. Journal of Vision, 12(7), 1–14. CrossRefGoogle Scholar
  15. Hein, E., & Moore, C. M. (2012). Spatio-temporal priority revisited: The role of feature identity and similarity for object correspondence in apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 975–988. CrossRefPubMedGoogle Scholar
  16. Hein, E., & Moore, C. M. (2014). Evidence for scene-based motion correspondence. Attention, Perception, & Psychophysics, 76, 793–804. CrossRefGoogle Scholar
  17. Hsu, P., Taylor, J. E. T., & Pratt, J. (2015). Frogs jump forward: Semantic knowledge influences the perception of element motion in the Ternus display. Perception, 44(7), 779–789. CrossRefGoogle Scholar
  18. Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36 (ECVP Abstract Supplement), 1–16 Google Scholar
  19. Kolers, P. A. (1972). Aspects of motion perception. New York: Pergamon Press. CrossRefGoogle Scholar
  20. Korte, A. (1915). Kinematoskopische Untersuchungen [Kinematoscopic examinations]. Zeitschrift Für Psychologie, 72, 194–296.Google Scholar
  21. Lleras, A., & Moore, C. M. (2003). When the target becomes the mask: Using apparent motion to isolate the object-level component of object substitution masking. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 106–120. CrossRefPubMedGoogle Scholar
  22. Moore, C. M., & Lleras, A. (2005). On the role of object representations in substitution masking. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1171–1180. CrossRefPubMedGoogle Scholar
  23. Moore, C. M., Mordkoff, J. T., & Enns, J. T. (2007). The path of least persistence: Object status mediates visual updating. Vision Research, 47(12), 1624–1630. CrossRefPubMedGoogle Scholar
  24. Mordkoff, J. T. (2019). A simple method for removing bias from a popular measure of standardized effect size: Adjusted partial eta squared. Advances in Methods and Pratices in Psychological Science, 2(3), 228–232. CrossRefGoogle Scholar
  25. Mordkoff, J. T., & Danek, R. H. (2011). Dividing attention between color and shape revisited: Redundant targets coactivate only when parts of the same perceptual object. Attention, Perception, & Psychophysics, 73(1), 103–112. CrossRefGoogle Scholar
  26. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau. Tutorial in Quantitative Methods for Psychology, 4(2), 61–64. CrossRefGoogle Scholar
  27. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. CrossRefPubMedGoogle Scholar
  28. Petersik, T. J., & Pantle, A. J. (1979). Factors controlling the competing sensations produced by a bistable stroboscopic motion display. VisionResearch, 19(2), 143–154. CrossRefGoogle Scholar
  29. Pikler, J. (1917). Sinnesphysiologische Untersuchungen [Sensoryphysiological examinations]. Leipzig, Germany: Barth.Google Scholar
  30. Poth, C. H., Herwig, A., & Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Front. Syst. Neurosci., 9, 176.
  31. Poth, C. H., & Schneider, W. X. (2016). Breaking object correspondence across saccades impairs object recognition: The role of color and luminance. Journal of Vision, 16(11), 1–12. CrossRefPubMedGoogle Scholar
  32. Ramachandran, V. S., & Anstis, S. M. (1983). Perceptual organization in moving patterns. Nature, 304, 529–531. CrossRefPubMedGoogle Scholar
  33. Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W. A. Rosenblith (Ed.), Sensory Communication (pp. 303–317). Concord, MA: MIT Press. CrossRefGoogle Scholar
  34. Sekuler, A. B., & Bennett, P. J. (2001). Generalized common fate: Grouping by common luminance changes. Psychological Science, 12(6), 437–444. CrossRefPubMedGoogle Scholar
  35. Tas, A. C., Moore, C. M., & Hollingworth, A. (2012). An object-mediated updating account of insensitivity to transsaccadic change. Journal of Vision, 12(11), 1–13. CrossRefGoogle Scholar
  36. Ternus, J. (1926). Experimentelle Untersuchungen über phänomenale Identität. [Experimental studies on phenomenal identity]. Psychologische Forschung, 7, 81–136. CrossRefGoogle Scholar
  37. Ullmann, S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  38. van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America A, 2(2), 300–321. CrossRefGoogle Scholar
  39. Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6), 1172–1217. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Werkhoven, P., Sperling, G., & Chubb, C. (1993). The dimensionality of texture-defined motion: A single channel theory. Vision Research, 33(4), 463–485. CrossRefPubMedGoogle Scholar
  41. Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung [Experimental studies on seeing movement]. Zeitschrift Für Psychologie Und Physiologie Der Sinnesorgane, 61(1), 161–265.Google Scholar
  42. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. II. Psychologische Forschung, 4(1), 301–350. CrossRefGoogle Scholar
  43. World Medical Association. (2013). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. The Journal of the American Medical Association, 310(20), 2191–2194. CrossRefGoogle Scholar
  44. Yu, K. (2000). Can semantic knowledge influence motion correspondence? Perception, 29(6), 693–707. CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Madeleine Y. Stepper
    • 1
    Email author
  • Cathleen M. Moore
    • 2
  • Bettina Rolke
    • 1
  • Elisabeth Hein
    • 1
  1. 1.Evolutionary Cognition - Cognitive Science, Department of PsychologyUniversity of TübingenTübingenGermany
  2. 2.Visual PerceptionUniversity of IowaIowa CityUSA

Personalised recommendations