Advertisement

An analysis of the processing of intramodal and intermodal time intervals

  • Leila Azari
  • Giovanna Mioni
  • Robert Rousseau
  • Simon GrondinEmail author
Article
  • 22 Downloads

Abstract

In this 3-experiment study, the Weber fractions in the 300-ms and 900-ms duration ranges are obtained with 9 types of empty intervals resulting from the combinations of three types of signals for marking the beginning and end of the signals: auditory (A), visual (V), or tactile (T). There were three types of intramodal intervals (AA, TT, and VV) and 6 types of intermodal intervals (AT, AV, VA, VT, TA, and TV). The second marker is always the same during Experiments 1 (A), 2 (V), and 3 (T). With an uncertainty strategy where the first marker is 1 of 2 sensory signals being presented randomly from trial to trial, the study provides direct comparisons of the perceived length of the different marker-type intervals. The results reveal that the Weber fraction is nearly constant in the three types of intramodal intervals, but is clearly lower at 900 ms than at 300 ms in intermodal conditions. In several cases, the intramodal intervals are perceived as shorter than intermodal intervals, which is interpreted as an effect of the efficiency in detecting the second marker of an intramodal interval. There were no significant differences between the TA and VA intervals (Experiment 1) and between the AV and TV intervals (Experiment 2), but in Experiment 3, the AT intervals were perceived as longer than the VT intervals. The results are interpreted in terms of the generalized form of Weber’s law, using the properties of the signals for explaining the additional nontemporal noise observed in the intermodal conditions.

Keywords

Temporal Processing Time perception Sensory modalities 

Notes

Acknowledgements

This study is part of the Doctoral thesis of L.A. This study was supported by a research grant (Grant No. RGPIN-2016-05028) from the Natural Sciences and Engineering Research Council of Canada to S.G. We would like to thank Célyne Bastien for her comments on this project and one anonymous reviewer for the comments on a previous version of this article. Correspondence should be addressed to Simon Grondin, École de psychologie, 2325 rue des Bibliothèques, Université Laval, Québec, Qc, Canada, G1V 0A6 (E-mail: simon.grondin@psy.ulaval.ca).

References

  1. Behar, I., & Bevan, W. (1961). The perceived duration of auditory and visual intervals: Cross-modal comparison and interaction. The American Journal of Psychology, 74, 17–26.CrossRefGoogle Scholar
  2. Bueti, D. (2011). The sensory representation of time. Frontiers of Integrative Neuroscience, 5. doi: https://doi.org/10.3389/fnint.2011.00034
  3. Block, R. A., & Zakay, D. (2008). Timing and remembering the past, the present, and the future. In S. Grondin (Ed.), Psychology of time (pp. 367–394). Bingley, England: Emerald Group.Google Scholar
  4. Fraisse, P. (1952). La perception de la durée comme organisation du successif. Mise en évidence expérimentale. L'Année Psychologique, 52, 39–46.CrossRefGoogle Scholar
  5. Gamache, P.-L., & Grondin, S. (2010). The life span of time intervals in reference memory. Perception, 39, 1431–1451.CrossRefGoogle Scholar
  6. Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84, 279–325.CrossRefGoogle Scholar
  7. Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. Allan (Eds.), Annals of the New York Academy of Sciences: Vol. 423. Timing and time perception (pp. 52–77). New York: New York Academy of Sciences. doi: https://doi.org/10.1111/j.1749-6632.1984.tb23417.x CrossRefGoogle Scholar
  8. Giray, M., & Ulrich, R. (1993). Motor coactivation revealed by response force in divided and focused attention. Journal of Experimental Psychology: Human Perception & Performance, 19, 1278–1291.Google Scholar
  9. Goldstone, S., & Goldfarb, J. L. (1964). Direct comparisons of auditory and visual durations. Journal of Experimental Psychology, 67(5), 483–485.CrossRefGoogle Scholar
  10. Goldstone, S., & Lhamon, W. T. (1972). Auditory-visual differences in human temporal judgment. Perceptual and Motor Skills, 34(2), 623–633.CrossRefGoogle Scholar
  11. Goldstone, S., & Lhamon, W. T. (1974). Studies of auditory–visual differences in human time judgment: I. Sounds are judged longer than lights. Perceptual & Motor Skills, 39, 63–82.CrossRefGoogle Scholar
  12. Gontier, E., Hasuo, E., Mitsudo, T., & Grondin, S. (2013). EEG investigations of duration discrimination: The intermodal effect is induced by an attentional bias. PLOS ONE, 8(8): e74073. doi: https://doi.org/10.1371/journal.pone.0074073.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Grondin, S. (1993). Duration discrimination of empty and filled intervals marked by auditory and visual signals. Perception & Psychophysics, 54, 383–394.CrossRefGoogle Scholar
  14. Grondin, S. (2001). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127, 22–44.CrossRefGoogle Scholar
  15. Grondin, S. (2003). Sensory modalities and temporal processing. In H. Helfrich (Ed.), Time and Mind II: Information processing perspectives (pp. 75–92). Ashland, OH: Hogrefe & Huber.Google Scholar
  16. Grondin, S. (2005). Overloading temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 31, 869–879.PubMedGoogle Scholar
  17. Grondin, S. (2008). Methods for studying psychological time. In S. Grondin (Ed.), Psychology of time (pp. 51–74). Bingley, England: Emerald Group.Google Scholar
  18. Grondin S. (2010). Unequal Weber fraction for the categorization of brief temporal intervals. Attention, Perception, & Psychophysics, 72, 1422–1430.CrossRefGoogle Scholar
  19. Grondin, S. (2014a). About the (non)scalar property for time perception. In H. Merchant & V. de Lafuente (Eds.), Advances in Experimental Medicine and Biology: Vol. 829. Neurobiology of interval timing (pp. 17–32) New York: NY: Springer.CrossRefGoogle Scholar
  20. Grondin, S. (2014b). Why studying intermodal duration discrimination matters. Frontiers in Psychology: Perception Science, 5, 628. doi: https://doi.org/10.3389/fpsyg.2014.00628 CrossRefGoogle Scholar
  21. Grondin, S., Gamache, P.-L., Tobin, S., Bisson, N., & Hawke, L. (2008). Categorization of brief temporal intervals: An auditory processing context may impair visual performances. Acoustical Science & Technology, 29, 338–340.CrossRefGoogle Scholar
  22. Grondin, S., Ivry, R., Franz, E., Perreault, L., & Metthé, L. (1996). Markers’ influence on the duration discrimination of intermodal intervals. Perception & Psychophysics, 58, 424–433.CrossRefGoogle Scholar
  23. Grondin, S., Ouellet, B., & Roussel, M.-E. (2001). About optimal timing and stability of Weber fraction for duration discrimination. Acoustical Science & Technology, 22, 370–372.CrossRefGoogle Scholar
  24. Grondin, S., Ouellet, B., & Roussel, M.-E. (2004). Benefits and limits of explicit counting for discriminating temporal intervals. Canadian Journal of Experimental Psychology, 58, 1–12.CrossRefGoogle Scholar
  25. Grondin, S., & Rousseau, R. (1991). Judging the relative duration of multimodal short empty time intervals. Perception & Psychophysics, 49, 245–256.CrossRefGoogle Scholar
  26. Grondin, S., Roussel, M.-E., Gamache, P.-L., Roy, M., & Ouellet, B. (2005). The structure of sensory events and the accuracy of judgments about time. Perception, 34, 45–58.CrossRefGoogle Scholar
  27. Hartcher-O’Brien, J., Di Luca, M., & Ernst, M. O. (2014). The duration of uncertain times: Audiovisual information about intervals is integrated in a statistically optimal fashion. PLOS ONE 9(3), e89339. doi: https://doi.org/10.1371/journal.pone.0089339 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hocherman, S., & Ben-Dov, G. (1979). Modality-specific effects on discrimination of short empty time intervals. Perceptual & Motor Skills, 48, 807–814.CrossRefGoogle Scholar
  29. Kanai, R., Lloyd, H., Bueti, D., & Walsh, V. (2011). Modality-independent role of the primary auditory cortex in time estimation. Experimental Brain Research, 209, 465–471.CrossRefGoogle Scholar
  30. Keele, S. W. (1986). Motor control. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of Perception and Human Performance: Vol. 2. Cognitive processes and performance (pp. 30-1–30-60). Toronto, Canada: Wiley.Google Scholar
  31. Kuroda, T., Hasuo, E., Labonté, K., Laflamme, V., & Grondin, S. (2014). Discrimination of two neighboring intramodal and intermodal empty time intervals marked by three successive stimuli. Acta Psychologica, 9, 134–141.CrossRefGoogle Scholar
  32. Mayer, K. M., Di Luca, M.. & Ernst, M. O. (2014). Duration perception in crossmodally-defined intervals. Acta Psychologica, 147, 2–9.CrossRefGoogle Scholar
  33. Mioni, G., Grassi, M., Tarantino, V., Stablum, F., Grondin, S., & Bisiacchi, P. S. (2016a). The impact of a concurrent motor task on auditory and visual temporal discrimination tasks. Attention, Perception, & Psychophysics, 78, 742–748.CrossRefGoogle Scholar
  34. Mioni, G., Grondin, S., Forgione, M., Fracasso, V., Mapelli, D. & Stablum, F. (2016b). The role of primary auditory and visual cortices in temporal processing: A tDCS approach. Behavioural Brain Research, 313, 151–157.CrossRefGoogle Scholar
  35. Mioni, G., Grondin, S., Mapelli, D., & Stablum, F. (2018). A tRNS investigation of the sensory representation of time. Scientific Reports, 8, 10364, doi: https://doi.org/10.1038/s41598-018-28673-7 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 26, 1770–1787.PubMedGoogle Scholar
  37. Posner, M. I. (1978). Chronometric explorations of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
  38. Rammsayer, T., & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8, 270–277.Google Scholar
  39. Rousseau, L., & Rousseau, R. (1996) Stop-reaction time and the internal clock. Perception & Psychophysics, 58, 434–448.CrossRefGoogle Scholar
  40. Rousseau, R., & Kristofferson, A. B. (1973). The discrimination of bimodal temporal gaps. Bulletin of the Psychonomic Society, 1, 115–116.CrossRefGoogle Scholar
  41. Rousseau, R., Poirier, J., & Lemyre, L. (1983). Duration discrimination of empty time intervals marked by intermodal pulses. Perception & Psychophysics, 34, 541–548.CrossRefGoogle Scholar
  42. Stauffer, C. C., Haldemann, J., Troche, S. J., & Rammsayer, T. H. (2012). Auditory and visual temporal sensitivity: Evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychological Research, 76, 20–31.CrossRefGoogle Scholar
  43. Ulrich, R., Nitschke, J., & Rammsayer, T. (2006). Crossmodal temporal discrimination: Assessing the predictions of a general pacemaker-counter model. Perception & Psychophysics, 68, 1140–1152.CrossRefGoogle Scholar
  44. van Noorden, L. (1975). Temporal coherence in the perception of tone sequences (Unpublished doctoral dissertation). Eindhoven University of Technology, Eindhoven, Netherlands. doi: https://doi.org/10.6100/IR152538
  45. Walker, J. T., & Scott, K. J. (1981). Auditory-visual conflicts in the perceived duration of lights, tones and gaps. Journal of Experimental Psychology: Human Perception and Performance, 7, 1327–1339.PubMedGoogle Scholar
  46. Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. Quarterly Journal of Experimental Psychology, 51B, 97–120.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Leila Azari
    • 1
  • Giovanna Mioni
    • 2
  • Robert Rousseau
    • 1
  • Simon Grondin
    • 1
    Email author
  1. 1.École de PsychologieUniversité LavalQuébecCanada
  2. 2.Dipartimento di Psicologia GeneraleUniversità di PadovaPadovaItaly

Personalised recommendations